
Lipschitz-free space over countable compact metric spaces
Aude Dalet
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I. Introduction

Definitions

Let (M, d) be a pointed metric space and Lip0(M) = {f : M→ R Lipschitz ; f (0) = 0}. Equipped with the
Lipschitz norm

‖f‖L = sup
x,y

f (x) − f (y)
d(x, y)

, f ∈ Lip0(M)

this space is a Banach space.
Moreover its unit ball is compact for the pointwise topology, then it is a dual space.

The Lipschitz-free space over M, denoted F(M), is the predual of Lip0(M). It is defined by
F(M) = vect{δx ; x ∈M} ⊂ Lip0(M).

Definition

Very little is known about the linear structure of Lipschitz-free spaces. For instance we know that F(R)
is isomorphically isometric to L1, but F(R2) is not isomorphic to any subspace of L1 (Naor-Schechtman).

Lipschitz-free spaces and BAP

Definition: Let X be a Banach space.
I X has approximation property (AP) if ∀K ⊂ X compact, ∀ε > 0, there is an operator T : X→ X of finite rank,

such that ∀x ∈ K, ‖Tx − x‖ < ε.
I X has λ-bounded approximation property (λ-BAP), λ > 1, if ∀K ⊂ X compact, ∀ε > 0 there is T : X→ X of

finite rank, such that ∀x ∈ K, ‖Tx − x‖ < ε and ‖T‖ 6 λ.
I X has metric approximation property (MAP) if it has 1-BAP.

Theorem[Godefroy, Kalton, 2003]: For a Banach space, X has λ-BAP if and only if F(X) has λ-BAP.
Theorem[Lancien, Pernecká]: The Lipschitz-free space over a doubling metric space has BAP. (M doubling if
there is a constant D so that every ball of radius R can be covered with D ball of radius R/2)
However,

There exists a compact metric space K such that F(K) fails AP.
Theorem [Godefroy, Ozawa]

Question: Does every countable compact metric space have BAP ?

II. Kalton decomposition

For a pointed metric space M and n ∈ Z, let

Mn = {x ∈M | d(0, x) 6 2n}

On = {x ∈M | d(0, x) < 2n}

An = Mn+1\O−n−1 ∪ {0}

and

Tnδ(x) =


0 , x ∈Mn−1(
log2 d(0, x) − (n − 1)

)
δ(x) , x ∈Mn\Mn−1(

n + 1 − log2 d(0, x)
)
δ(x) , x ∈Mn+1\Mn

0 , x <Mn+1

For every γ in F(M), γ =
∑

n∈Z
Tnγ unconditionnally and

∑
n∈Z
‖Tnγ‖ 6 72‖γ‖.

Theorem [Kalton, 2004]

Consequently

I M ′ = {0}

We denote, ∀N ∈N, SN =
n=N∑

n=−N
Tn : F(M)→ F(AN), then the sequence of operators (SN)N verifies:

I the rank of SN is finite
I ∀γ ∈ F(M), SNγ→ γ

I ∀N ∈N, ‖SN‖ 6 72
That is: F(M) has 72-BAP.

I M ′ finite: M ′ = {a1, ..., ak}

Then F(M) '
(
⊕k

i=1F(Fi)
)

, with F ′i = {ai}. So ∀i, F(Fi) has 72-BAP.
And BAP is stable under finite `1-sum and isomorphism.

Question: Does M(2) = {0} imply F(M) has BAP ?

M(2) = {0}⇒ F(M) has BAP ?

The first idea is to use again the decomposition :

M(2) = {0}⇒ A ′n finite, ∀n ∈ Z. So F(A ′n) has BAP :
∀n ∈ Z, ∃Ln

j : F(An)→ F(An) finite rank operators,
I ∀γ ∈ F(An), lim

j
Ln

j γ = γ

I ∀j, ‖Ln
j ‖ 6 Cn

Moreover the decomposition gives :
Sn : F(M)→ F(An) s.t.

I ∀µ ∈ F(M), lim
n

Snµ = µ

I ∀n, ‖Sn‖ 6 72

Combining these operators we obtain Rj,n = Ln
j ◦ Sn : F(M)→ F(M) finite rank operator s.t.

I ∀µ ∈ F(M), lim
j,n

Rj,nµ = µ

I ∀n, j, ‖Rn,j‖ 6 72Cn

Problem: The constant depends on n...
Question: Does there exist a universal constant C so that M ′ finite⇒ F(M) has C-BAP ?

III. Duality
Theorem[Grothendieck]: X separable Banach space, isometric to a dual space. If X has AP, then X has MAP.
In order to use that theorem of Grothendieck to obtain C = 1, the idea is to see Lipschitz-free spaces
over countable compact metric spaces as dual spaces. Let us define the space of which F(M) will be the
dual space:

Let f ∈ Lip0(M). We say that f is in lip0(M) if ∀ε > 0,∃δ > 0 s.t.

d(x, y) < δ⇒ |f (x) − f (y)| 6 εd(x, y)

Definition

To prove that the dual space of lip0(M) is F(M) we will use a theorem due to Petunı̄n and Plı̄čko:
Theorem: Let X be a separable Banach space and S ⊂ X∗ closed such that : S ⊂ NA(X) and S is separating.
Then S∗ ≡ X.
We know that, in the case of compact spaces, lip0(M) is a subset of NA(F(M)) and it is separating if and
only if it separates points uniformly.
Definition: f ∈ lip0(M) separates points uniformly if

∃c > 1 : ∀x, y ∈M,∃h = hx,y ∈ lip0(M), ‖h‖L 6 c and |h(x) − h(y)| = d(x, y)

For every M countable compact metric space, F(M) is a dual space.
Theorem
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III. Duality

Idea of the proof

Assume M ′ finite.
Let x, y ∈M and set a = d(x, y). Then M ′ ∩ B(x, a/2)\{x} = {y1, ..., yn}.
If ai = d(x, yi), 1 6 i 6 n, we can write {ai, i 6 n} = {v1 < ... < vr}.
Now set v = min{v1} ∪ {|vi − vi−1|} and define ϕ : [0,+∞[→ [0,+∞[ piecewise affine :

ϕ(t) =


0 , t ∈

[
0, v

4
[
:= V0

vi , t ∈
]
vi −

v
4, vi +

v
4
[
:= Vi, 1 6 i 6 r

a
2 , t ∈

]a
2 − v

4,+∞[ := Vr+1

a/2

a/2

v v1 v2 v3

x=y

Then if f = d(., x), the set C = f−1
(
[0,+∞[\

⋃r+1
i=0 Vi

)
is finite. Moreover h = 2 (ϕ(d(., x)) −ϕ(d(0, x))

verifies h(0) = 0, |h(x) − h(y)| = d(x, y) and ‖h‖L 6 4.

If we set δ =
1
2

min{v} ∪ {d(z, t) , z , t ∈ C} ∪ {dist(z, K\C) , z ∈ C}, we obtain that if d(z, t) 6 δ, then
h(z) = h(t) and finally h ∈ lip0(M).

In the case M(α) finite, where α < ω1, we construct a function constant around points of M(α). Let C1
be what remains. We can find α1 < α such that C(α1)

1 is finite and we construct a function constant

around points of C(α1)
1 .

... and so on ...
We obtain a decreasing sequence ... < αn < ... < α2 < α1 < α of ordinals, then it stops: ∃n ∈N such
that Cn is finite. The last function we obtain is in lip0(M), separates x and y and has a norm bounded
with a constant not depending in x and y.

M countable compact metric space⇒ F(M) MAP

For every M countable compact metric space, F(M) has MAP.
Corollary

Idea of the proof : We proceed by induction on ordinals.
The idea is the same using in the case M(2) = {0} (which didn’t work because of the dependance in n of
the constant): on each step we use Kalton decomposition and Grothendieck Theorem to deduce the
result from the last step.

IV. Extension of the result to proper spaces
Definition: We say that a metric space M is proper if every closed ball is compact.

If M is proper and countable, then F(M) has MAP.
Theorem

Fist we prove that this subset of lip0(M):

S =

f ∈ lip0(M) ; lim
d(y,o)→+∞

f (y)
d(y, 0)

= 0, lim
r→+∞ sup

x,y<B(0,r)

f (y) − f (y)
d(x, y)

= 0


separates uniformly points of M. Then using Petunı̄n and Plı̄čko Theorem we have that F(M) is a dual
space.
Finally, we can apply the last result, use Kalton decomposition and Grothendieck Theorem to obtain
F(M) has MAP.
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N.J. Kalton. Spaces of Lipschitz and Hölder functions and their applications. Collect. Math.,
55(2):171-217, 2004.

G. Lancien and E. Pernecká. Approximation properties and Schauder decompositions in Lipschitz-free
spaces. J. Funct. Anal., 264(10):2323-2334, 2013.

A. Naor and G. Schechtman. Planar earthmover in not in L1. SIAM J. Comput., 37(3):804-826
(electronic), 2007.
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