Lipschitz-free space over countable compact metric spaces

Aude Dalet

Laboratoire de Mathématiques de Besancon, Université de Franche-Comté

I. INTRODUCTION

DEFINITIONS	LIPSCHITZ-FREE SPACES AND BAP
Let (M, d) be a pointed metric space and $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz} ; f(0) = 0\}$. Equipped with the Lipschitz norm $ f _L = \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}, f \in Lip_0(M)$ this space is a Banach space. Moreover its unit ball is compact for the pointwise topology, then it is a dual space. Definition The Lipschitz-free space over M , denoted $\mathcal{F}(M)$, is the predual of $Lip_0(M)$. It is defined by $\mathcal{F}(M) = \overline{\operatorname{vect}}\{\delta_x ; x \in M\} \subset Lip_0(M)$.	Definition: Let X be a Banach space. • X has approximation property (AP) if $\forall K \subset X$ compact, $\forall \varepsilon > 0$, there is an operator $T : X \to X$ of finite rank, such that $\forall x \in K$, $ Tx - x < \varepsilon$. • X has λ -bounded approximation property (λ -BAP), $\lambda \ge 1$, if $\forall K \subset X$ compact, $\forall \varepsilon > 0$ there is $T : X \to X$ of finite rank, such that $\forall x \in K$, $ Tx - x < \varepsilon$ and $ T \le \lambda$. • X has metric approximation property (MAP) if it has 1-BAP. Theorem [Godefroy, Kalton, 2003]: For a Banach space, X has λ -BAP if and only if $\mathcal{F}(X)$ has λ -BAP. Theorem [Lancien, Pernecká]: The Lipschitz-free space over a doubling metric space has BAP. (M doubling if there is a constant D so that every ball of radius R can be covered with D ball of radius R/2) However,
Very little is known about the linear structure of Lipschitz-free spaces. For instance we know that $\mathcal{F}(\mathbb{R})$ is isomorphically isometric to L_1 , but $\mathcal{F}(\mathbb{R}^2)$ is not isomorphic to any subspace of L_1 (Naor-Schechtman).	Theorem [Godefroy, Ozawa] There exists a compact metric space K such that $\mathcal{F}(K)$ fails AP.

Question: Does every countable compact metric space have BAP?

II. KALTON DECOMPOSITION

For a pointed metric space *M* and $n \in \mathbb{Z}$, let

$$M_n = \{x \in M \mid d(0, x) \le 2^n\} O_n = \{x \in M \mid d(0, x) < 2^n\} A_n = M_{n+1} \setminus O_{-n-1} \cup \{0\}$$

and

 $T_{n}\delta(x) = \begin{cases} 0 & , x \in M_{n-1} \\ \left(\log_{2}d(0,x) - (n-1)\right)\delta(x) & , x \in M_{n} \setminus M_{n-1} \\ \left(n+1 - \log_{2}d(0,x)\right)\delta(x) & , x \in M_{n+1} \setminus M_{n} \\ 0 & , x \notin M_{n+1} \end{cases}$

Theorem [Kalton, 2004]For every γ in $\mathcal{F}(M)$, $\gamma = \sum_{n \in \mathbb{Z}} T_n \gamma$ unconditionnally and $\sum_{n \in \mathbb{Z}} ||T_n \gamma|| \leq 72 ||\gamma||$.

Consequently

▶ $\mathbf{M}' = \{\mathbf{0}\}$ We denote, $\forall N \in \mathbb{N}, S_N = \sum_{n=-N}^{n=N} T_n : \mathcal{F}(M) \to \mathcal{F}(A_N)$, then the sequence of operators $(S_N)_N$ verifies: • the rank of S_N is finite • $\forall \gamma \in \mathcal{F}(M), S_N \gamma \to \gamma$ • $\forall N \in \mathbb{N}, ||S_N|| \leq 72$ That is: $\mathcal{F}(M)$ has 72-BAP. • \mathbf{M}' finite: $M' = \{a_1, ..., a_k\}$ Then $\mathcal{F}(M) \simeq \left(\bigoplus_{i=1}^k \mathcal{F}(F_i)\right)$, with $F'_i = \{a_i\}$. So $\forall i, \mathcal{F}(F_i)$ has 72-BAP.

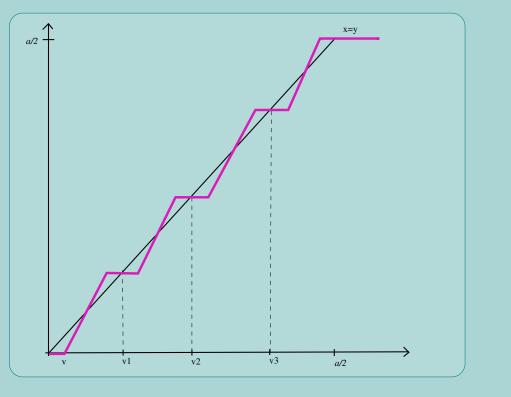
III. DUALITY

IDEA OF THE PROOF

Assume M' finite.

Let $x, y \in M$ and set a = d(x, y). Then $M' \cap B(x, a/2) \setminus \{x\} = \{y_1, ..., y_n\}$. If $a_i = d(x, y_i), 1 \le i \le n$, we can write $\{a_i, i \le n\} = \{v_1 < ... < v_r\}$. Now set $v = \min\{v_1\} \cup \{|v_i - v_{i-1}|\}$ and define $\varphi : [0, +\infty[\rightarrow [0, +\infty[$ piecewise affine :

 $\varphi(t) = \begin{cases} 0 \ , \ t \in \left[0, \frac{v}{4}\right] := V_0 \\ v_i \ , \ t \in \left]v_i - \frac{v}{4}, v_i + \frac{v}{4}\right] := V_i, \ 1 \le i \le r \\ \frac{a}{2} \ , \ t \in \left]\frac{a}{2} - \frac{v}{4}, +\infty\right[:= V_{r+1} \end{cases}$



Then if f = d(., x), the set $C = f^{-1} \left([0, +\infty[\setminus \bigcup_{i=0}^{r+1} V_i] \right)$ is finite. Moreover $h = 2 \left(\varphi(d(., x)) - \varphi(d(0, x)) \right)$ verifies h(0) = 0, |h(x) - h(y)| = d(x, y) and $||h||_L \leq 4$. If we set $\delta = \frac{1}{2} \min\{v\} \cup \{d(z, t), z \neq t \in C\} \cup \{dist(z, K \setminus C), z \in C\}$, we obtain that if $d(z, t) \leq \delta$, then h(z) = h(t) and finally $h \in lip_0(M)$.

In the case $\mathbf{M}^{(\alpha)}$ finite, where $\alpha < \omega_1$, we construct a function constant around points of $M^{(\alpha)}$. Let C_1 be what remains. We can find $\alpha_1 < \alpha$ such that $C_1^{(\alpha_1)}$ is finite and we construct a function constant around points of $C_1^{(\alpha_1)}$ and so on ...

And BAP is stable under finite ℓ_1 -sum and isomorphism.

Question: Does $M^{(2)} = \{0\}$ imply $\mathcal{F}(M)$ has BAP ?

$M^{(2)} = \{0\} \Rightarrow \mathcal{F}(M)$ has **BAP**?

The first idea is to use again the decomposition :

 $M^{(2)} = \{0\} \Rightarrow A'_n \text{ finite, } \forall n \in \mathbb{Z}. \text{ So } \mathcal{F}(A'_n) \text{ has BAP}:$ $\forall n \in \mathbb{Z}, \exists L_j^n : \mathcal{F}(A_n) \Rightarrow \mathcal{F}(A_n) \text{ finite rank operators,}$ $\forall \gamma \in \mathcal{F}(A_n), \lim_j L_j^n \gamma = \gamma$ $\forall j, \|L_j^n\| \leq C_n$

Moreover the decomposition gives : $S_n : \mathcal{F}(M) \to \mathcal{F}(A_n)$ s.t. $\blacktriangleright \forall \mu \in \mathcal{F}(M), \lim_n S_n \mu = \mu$ $\triangleright \forall n, ||S_n|| \leq 72$

Combining these operators we obtain $R_{j,n} = L_j^n \circ S_n : \mathcal{F}(M) \to \mathcal{F}(M)$ finite rank operator s.t.

• $\forall \mu \in \mathcal{F}(M), \lim_{j,n} R_{j,n}\mu = \mu$ • $\forall n, j, ||R_{n,j}|| \leq 72C_n$

Problem: *The constant depends on n...*

Question: Does there exist a universal constant *C* so that *M*^{\prime} finite $\Rightarrow \mathcal{F}(M)$ has *C*-BAP ?

III. DUALITY

Theorem[Grothendieck]: *X* separable Banach space, isometric to a dual space. If X has AP, then X has MAP. In order to use that theorem of Grothendieck to obtain C = 1, the idea is to see Lipschitz-free spaces over countable compact metric spaces as dual spaces. Let us define the space of which $\mathcal{F}(M)$ will be the dual space:

Definition

We obtain a decreasing sequence $... < \alpha_n < ... < \alpha_2 < \alpha_1 < \alpha$ of ordinals, then it stops: $\exists n \in \mathbb{N}$ such that C_n is finite. The last function we obtain is in $lip_0(M)$, separates x and y and has a norm bounded with a constant not depending in x and y.

M countable compact metric space $\Rightarrow \mathcal{F}(M)$ MAP

Corollary

For every *M* countable compact metric space, $\mathcal{F}(M)$ has MAP.

Idea of the proof : We proceed by induction on ordinals.

The idea is the same using in the case $M^{(2)} = \{0\}$ (which didn't work because of the dependance in *n* of the constant): on each step we use Kalton decomposition and Grothendieck Theorem to deduce the result from the last step.

IV. EXTENSION OF THE RESULT TO PROPER SPACES

Definition: *We say that a metric space M is proper if every closed ball is compact.*

Theorem

If *M* is proper and countable, then $\mathcal{F}(M)$ has MAP.

Fist we prove that this subset of $lip_0(M)$:

$$S = \left\{ f \in lip_0(M) ; \lim_{d(y,o) \to +\infty} \frac{f(y)}{d(y,0)} = 0, \lim_{r \to +\infty} \sup_{\substack{x \neq y \notin \overline{B}(0,r)}} \frac{f(y) - f(y)}{d(x,y)} = 0 \right\}$$

separates uniformly points of *M*. Then using Petunīn and Plīčko Theorem we have that $\mathcal{F}(M)$ is a dual space.

Finally, we can apply the last result, use Kalton decomposition and Grothendieck Theorem to obtain $\mathcal{F}(M)$ has MAP.

Let $f \in Lip_0(M)$. We say that f is in $lip_0(M)$ if $\forall \varepsilon > 0, \exists \delta > 0$ s.t.

 $d(x,y) < \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon d(x,y)$

To prove that the dual space of $lip_0(M)$ is $\mathcal{F}(M)$ we will use a theorem due to Petunīn and Plīčko: **Theorem:** Let X be a separable Banach space and $S \subset X^*$ closed such that : $S \subset NA(X)$ and S is separating. Then $S^* \equiv X$.

We know that, in the case of compact spaces, $lip_0(M)$ is a subset of $NA(\mathcal{F}(M))$ and it is separating if and only if it separates points uniformly.

Definition: $f \in lip_0(M)$ separates points uniformly if

 $\exists c \geq 1 : \forall x, y \in M, \exists h = h_{x,y} \in lip_0(M), \|h\|_L \leq c \text{ and } |h(x) - h(y)| = d(x, y)$

Theorem For every *M* countable compact metric space, $\mathcal{F}(M)$ is a dual space.

References

A. Dalet. Free spaces over countable compact metric spaces. Submitted

G. Godefroy. The use of norm attainment. To appear in *Bulletin of the Belgian Math. Society.*

G. Godefroy and N.J. Kalton. Lipschitz-free Banach spaces. *Studia Math.*, 159(1):121-141, 2003. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday.

G. Godefroy and N. Ozawa. Free Banach spaces and the approximation properties. To appear. in *Proc. Amer. Math. Soc.*

A. Grothendieck. Produits tensoriels topologiques et espaces nuclaires. Mem. Amer. Math. Soc., 1955(16):140, 1955.

- N.J. Kalton. Spaces of Lipschitz and Hölder functions and their applications. Collect. Math., 55(2):171-217, 2004.
- G. Lancien and E. Pernecká. Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal., 264(10):2323-2334, 2013.
- A. Naor and G. Schechtman. Planar earthmover in not in L₁. SIAM J. Comput., 37(3):804-826 (electronic), 2007.
- J. Ī. Petunīn and A. N. Plīčko. Some properties of the set of functionals that attain a supremum on the unit sphere. *Ukrain. Mat. Ž.*, 26:102-106, 143, 1974.

N. Weaver. *Lipschitz algebras*. World Scientific Publishing Co. Inc., River Edge, NJ, 1999.