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Abstract. This paper is based on the paper [11] of N. J. Kalton. The main

result is that c0 cannot be uniformly or coarsely embedded into a reflexive
Banach space. In order to prove it, we will present a Ramsey type argument

and Kalton’s property Q, which used together permit to rule out coarse or

uniform embeddings into reflexive Banach spaces.

1. Introduction

Let (M,d), (N, δ) be metric spaces and f : M → N be any map. For t > 0,
define

ϕf (t) = inf{δ(f(x), f(y)); d(x, y) ≥ t}
and

ωf (t) = sup{δ(f(x), f(y)); d(x, y) ≤ t}.
The map f is said to be:

• a coarse embedding if lim
t→+∞

ϕf (t) = +∞ and ωf (t) < +∞, ∀t > 0. Then

M coarsely embeds into N .
• a uniform embedding if lim

t→0
ωf (t) = 0 and ϕf (t) > 0, ∀t > 0. Then M

uniformly embeds into N .
• a strong uniform embedding if f is a coarse and a uniform embedding.
• a Lipschitz embedding if there exist A,B > 0 such that for every x, y ∈M ,

Ad(x, y) ≤ δ(f(x), f(y)) ≤ Bd(x, y).

In 1974, Aharoni [1] proved that every separable metric space can be Lipschitz
embedded into c0. There exist quantitative versions of this result due to Assouad
[4], Pelant [17] and finally the sharp constant of distortion is 2 and is given by
Kalton and Lancien in [13]. It is an open question to know whether there exist
other Banach spaces into which every separable metric spaces can be Lipschitz
embedded.

This question is equivalent to the following: if c0 Lipschitz-embeds into a Banach
space, does it imply that it linearly embeds into this space? In [10] Kalton proved
that there exists a Banach space into which c0 strong uniformly embeds but does
not linearly embed. More precisely, for any non trivial gauge ω and any metric
space (M,d), the Lipschitz-free space over (M,ω ◦ d), denoted Fω(M), is a Schur

space. Now ω :
R+ → R+

t 7→
{
tα, t ≤ 1
t, t ≥ 1

is non trivial, thus Fω(c0) is a Schur

space. Moreover it is easy to see that the identity from (c0, ‖ · ‖∞) to (c0, ω ◦‖ · ‖∞)
is a strong uniform embedding. It is known from [9] that (c0, ω◦‖·‖∞) isometrically
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embeds into its Lipschitz-free space. Finally, we conclude that c0 strong uniformly
embeds into Fω(c0), which is a Schur space, hence c0 cannot be linearly embedded
into it.

It was proved independently by Christensen [7], Mankiewicz [15] and Aronszajn
[3] in the 70’s that if a separable Banach space X Lipschitz embeds into a space
Y with the Radon-Nikodym property, the embedding admits a point of Gâteaux-
differentiability and one can deduce that X linearly embeds into Y . Thus, because
every reflexive space has the RNP, it is not possible to find a reflexive Banach
space which is universal for Lipschitz embeddings of separable metric space, but
one can ask whether there exists a reflexive Banach space into which every separable
metric space could be uniformly or coarsely embedded. Following a paper of Kalton
[11] (see also [14] or [8]) we will prove that there exists no reflexive Banach space
containing uniformly or coarsely the space c0. More precisely we will define a
property, failed by c0, and prove that a Banach space failing this property cannot
be uniformly or coarsely embedded into a reflexive Banach space. This implies
a previous result: Mendel and Naor proved in [16] that c0 cannot be coarsely
embedded into a super-reflexive Banach space. However Baudier obtained in [5] that
any Banach space without cotype contains strongly uniformly every proper metric
space. In particular

(
⊕+∞
n=1`

n
∞
)
2
, which is reflexive, contains strongly uniformly

every proper metric space.

Section 2 is about Ramsey theory and is devoted to the proof of a Ramsey type
argument due to Kalton [11]. In section 3 we introduce the Q-property and prove
that a Banach space failing it cannot be uniformly or coarsely embedded into a
reflexive Banach space. In section 4 it is proved first that a stable Banach space
has the Q-property. Then we present a theorem which permits to rule out the
Q-property and we use it to prove that the James space J and its dual fail it. To
conclude this section, we focus on the space c0 and prove that it does not have the
Q-property. Then we prove a stronger result of Kalton: c0 cannot be uniformly
or coarsely embedded into a Banach space having all its iterated duals separable.
Finally in section 5, we compare the structure of the paper [11] with the proof of
the fact that C[1, ω1] cannot be uniformly embedded into `∞ in [12].

2. Preliminaries: Ramsey theory and special graphs

Let M be an infinite subset of N and k ∈ N. The set Gk(M) is the set of all subsets
of M of size k. We will write an element n of Gk(M) as follows: n = {n1, . . . , nk},
with n1 < · · · < nk.

First we state Ramsey’s theorem (see [18]):

Theorem 2.1. Let k, r ∈ N and f : Gk(N) → {1, . . . , r} be any map. Then there
exists an infinite subset M of N and i ∈ {1, . . . , r} such that for every n ∈ Gk(M),
f(n) = i.

It is not difficult to deduce a topological version of this result.

Corollary 2.2. Let (K, d) be a compact metric space, k ∈ N and f : Gk(N)→ K.
Then for every ε > 0, there exists an infinite subset M of N such that for every
n,m ∈ Gk(M), d(f(n), f(m)) < ε.

We can think about a result as a part of Ramsey theory if for a given coloring
of a mathematical object, there exists a sub-object which is monochromatic.
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From now we will follow the paper of Kalton [11] (see also [14], [8]). For an
infinite subset M of N, endow the space Gk(M) with the following metric d: two
distinct subsets n,m ∈ Gk(M) are said to be adjacent (d(n,m) = 1) if

n1 ≤ m1 ≤ n2 ≤ · · · ≤ nk ≤ mk or m1 ≤ n1 ≤ m2 ≤ · · · ≤ mk ≤ nk.
We will write n < m when nk < m1. In this case, d(n,m) = k.

We will start by a Ramsey type result which will be useful to give an obstruction
to uniform and coarse embeddability into reflexive Banach spaces. Before to state
it we need some tools.

Let X be a Banach space, k ∈ N, f : Gk(N) → X a bounded map and U a
non-principal ultrafilter on N. We define a bounded map ∂Uf : Gk−1(N)→ X∗∗ as
follows:

∀n ∈ Gk−1(N), ∂Uf(n) = w∗- lim
nk∈U

f(n1, . . . , nk−1, nk).

We can iterate this procedure for 1 ≤ r ≤ k: ∂rUf : Gk−r(N)→ X(2r), where X(2r)

is the 2r-th dual of X. Then ∂kUf is an element of X(2k).

Proposition 2.3. Let f : Gk(N) → R be a bounded map. Then for every ε > 0,
there exists M, an infinite subset of N, such that:

∀n ∈ Gk(M), |f(n)− ∂kUf | < ε.

Proof. Let ε > 0. By induction on j ∈ N, we will construct M = {m1, . . . ,mj , . . . }
such that if n ⊂ {m1, . . . ,mj} is of size i ≤ min{j, k}, then |∂k−iU f(n)− ∂kUf | < ε:

• Because

∂kUf = w∗ - lim
n1∈U

. . . lim
nk∈U

f(n1, . . . , nk)

and for m ∈ N,

∂k−1U f(m) = w∗ - lim
n2∈U

. . . lim
nk∈U

f(m,n2, . . . , nk)

we can deduce that there exists m1 ∈ N such that |∂k−1U f(m1)− ∂kUf | < ε.
• Assume m1 < · · · < mj chosen.

Let 1 ≤ i ≤ min{j, k − 1} and n = {n1, . . . , ni} ⊂ {m1, . . . ,mj}. Then
for m > mj ,

|∂k−(i+1)
U f(n ∪m)− ∂k−iU f(n)| ≤ w∗- lim

ni+1∈U
lim

ni+2∈U
. . . lim

nk∈U
|f(n1, . . . , ni,m, ni+2, . . . , nk)

− f(n1, . . . , ni, ni+1, ni+2, . . . , nk)|
Thus there exists An ∈ U such that for every m ∈ An, m > mj and

w∗- lim
ni+1∈U

(
lim

ni+2∈U
. . . lim

nk∈U
|f(n1, . . . , ni,m, ni+2, . . . , nk)

− f(n1, . . . , ni, ni+1, ni+2, . . . , nk)|
)
< ε

Moreover the intersection A of all An is not empty and belongs to U . Thus
pick mj+1 ∈ A.

Then for every n = {n1, . . . , ni} ⊂ {m1, . . . ,mj}, 1 ≤ i ≤ min{j, k − 1},

|∂k−(i+1)
U f(n ∪mj+1)− ∂kUf | ≤ |∂

k−(i+1)
U f(n ∪mj+1)− ∂Uk−if(n)|+ |∂k−iU f(n)− ∂kUf |

< 2ε
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We deduce the result with i = k. �

It is possible to generalize this result to bounded maps which takes values into
a Banach space X.

Lemma 2.4. Let f : Gk(N) → X be a bounded map. Then for every ε > 0, there
exists M, an infinite subset of N, such that:

∀n ∈ Gk(M), ‖f(n)‖ < ‖∂kUf‖+ ωf (1) + ε.

Proof. For two bounded maps f : Gk(N) → X and g : Gk(N) → X∗, define
f ⊗ g : G2k(N)→ R by f ⊗ g(n) = 〈f(n2, n4, . . . , n2k), g(n1, n3, . . . , n2k−1)〉.

Then ∂2U (f ⊗ g) = ∂Uf ⊗ ∂Ug. Indeed,

∂U (f ⊗ g)(n1, . . . , n2k−1) = lim
n2k∈U

〈f(n2, n4, . . . , n2k), g(n1, n3, . . . , n2k−1)〉

= 〈∂Uf(n2, . . . , n2k−2), g(n1, . . . , n2k−1)〉
thus

∂2U (f ⊗ g)(n1, . . . , n2k−2) = lim
n2k−1∈U

〈∂Uf(n2, n4, . . . , n2k−2), g(n1, n3, . . . , n2k−1)〉

= 〈∂Uf(n2, . . . , n2k−2), ∂Ug(n1, . . . , n2k−3)〉
= (∂Uf ⊗ ∂Ug)(n1, . . . , n2k−2).

In particular, ∂2kU (f ⊗ g) = ∂kUf ⊗ ∂kUg.

Let f : Gk(N) → X be a bounded map. Hahn-Banach theorem gives a map
g from Gk(N) to X∗ such that for every n ∈ Gk(N), 〈f(n), g(n)〉 = ‖f(n)‖ and
‖g(n)‖ = 1. It follows,

|∂2kU (f ⊗ g)| = |∂kUf ⊗ ∂kUg| = |〈∂kUf, ∂kUg〉| ≤ ‖∂kUf‖‖∂kUg‖ = ‖∂kUf‖

The map f ⊗ g : G2k(N) → R is bounded, then we can apply Proposition 2.3
and for every ε > 0 there exists A an infinite subset of N such that for every
n ∈ G2k(A), |f ⊗ g(n)− ∂2kU f ⊗ g| < ε, hence

|f ⊗ g(n)| < ε+ |∂2kU f ⊗ g| ≤ ε+ ‖∂kUf‖.
Now we enumerate A = {m1 < n1 < m2 < n2 < · · · < mj < nj < . . . } and set
M = {m1, . . . ,mj , . . . }.

Let n ∈ Gk(M), then for any p ∈ Gk(A) which is adjacent to n (such a p exists
by the definitions of A and M), we have

‖f(n)‖ = 〈f(n), g(n)〉 = 〈f(p), g(n)〉+ 〈f(n)− f(p), g(n)〉
≤ f ⊗ g(n1, p1, . . . , nk, pk) + ‖f(n)− f(p)‖‖g(n)‖

< ε+ ‖∂kUf‖+ ωf (d(n, p)) = ε+ ‖∂kUf‖+ ωf (1)

�

We can now state the result we will use to prove the main theorem:

Corollary 2.5. Let X be a reflexive Banach space and f : Gk(N)→ X be a bounded
map. Then for every ε > 0, there exists M, an infinite subset of N, and x ∈ X such
that:

∀n ∈ Gk(M), ‖f(n)− x‖ ≤ ωf (1) + ε.
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Proof. Since X is reflexive there exists x ∈ X such that ∂kUf = x. We define a
bounded map g : Gk(N) → X by g(n) = f(n) − x, for all n ∈ Gk(N). Clearly
∂kUg = 0 and ωg(1) = ωf (1). Finally by a direct application of the previous lemma:

∀ε > 0,∃M ⊆ N : ∀n ∈ Gk(M), ‖g(n)‖ < ‖∂kUg‖+ ωg(1) + ε.

That is,

∀ε > 0,∃M ⊆ N : ∀n ∈ Gk(M), ‖f(n)− x‖ < ωf (1) + ε.

�

3. Obstruction to uniform or coarse embeddings into reflexive
Banach spaces

Given (M,d) a metric space, ε > 0 and δ ≥ 0, we say that M has the Q(ε, δ)-
property if for every k ∈ N, for every map f : Gk(N) → M with ωf (1) ≤ δ, there
exists an infinite subset M of N such that:

∀n < m ∈ Gk(M), d(f(n), f(m)) ≤ ε.

We define ∆M (ε) as the supremum over all δ ≥ 0 such that M has the Q(ε, δ)-
property.

The key result of this paper is the following:

Theorem 3.1. Let (M,d) be a metric space.

(1) If M uniformly embeds into a reflexive Banach space, then

∀ε > 0,∆M (ε) > 0.

(2) If M coarsely embeds into a reflexive Banach space, then

lim
ε→+∞

∆M (ε) = +∞.

Proof. Let X be a reflexive Banach space and h : M → X be any map.
We will prove that for every δ > 0 and f : Gk(N) → M a map such that

ωf (1) ≤ δ, there exists an infinite subset M of N so that for every n < p ∈ Gk(M),
ϕh(d(f(n), f(p))) ≤ 4 ωh(δ) and conclude.

Let δ > 0 and f : Gk(N) → M be a map such that ωf (1) ≤ δ. We can apply
Corollary 2.5 on the map h ◦ f : Gk(N) → X, with ε = ωh◦f (1), to obtain M, an
infinite subset of N, and x ∈ X such that for every n, p ∈ Gk(M),

‖h ◦ f(n)− h ◦ f(p)‖ ≤ ‖h ◦ f(n)− x‖+ ‖h ◦ f(p)− x‖ ≤ 4 ωh◦f (1) ≤ 4 ωh(δ)

The last inequality holds because we clearly have ωh◦f (1) ≤ ωh(δ).

(1) Uniform embedding. Let ε > 0, then there exists α > 0 such that
ϕh(ε) ≥ 4 α and δ > 0 so that ωh(δ) ≤ α.

For this δ > 0, for every f : Gk(N) → M such that ωf (1) ≤ δ, there
exists an infinite subset M of N such that ∀n < p ∈ Gk(M),

ϕh(d(f(n), f(p))) ≤ 4 ωh(δ) ≤ 4 α ≤ ϕh(ε).

We finally conclude that d(f(n), f(p)) ≤ ε, M has the Q(ε, δ)-property and
∆M (ε) > 0.
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(2) Coarse embedding. Let δ > 0, then there exist β > 0 such that ωh(δ) ≤ β
and t > 0 such that ϕh(t) ≥ 4 β.

Let ε be greater than t. Then for every f : Gk(N) → M such that
ωf (1) ≤ δ, there exists an infinite subset M of N such that ∀n < p ∈ Gk(M),

ϕh(d(f(n), f(p))) ≤ 4 ωh(δ) ≤ 4 β ≤ ϕh(t) ≤ ϕh(ε).

Then d(f(n), f(p)) ≤ ε and ∆M (ε) ≥ δ. To conclude, lim
ε→+∞

∆M (ε) = +∞.

Which completes the proof. �

In the case where X is a Banach space, the function ∆X has some particular
properties:

Lemma 3.2. Let X be a Banach space.

(1) There exists 0 ≤ QX ≤ 1 such that for every ε > 0, ∆X(ε) = QX · ε.
(2) For every 0 < ε ≤ 1, we have ∆X(ε) = ∆BX

(ε).

Proof.

(1) To prove that there exists a constant QX ≥ 0 such that for every ε > 0,
∆X(ε) = QX · ε, it is enough to prove that for every λ > 0 , we have
∆X(λ ·ε) = λ ·∆X(ε). To do so consider δ > 0 and prove that δ ≤ ∆X(λ ·ε)
is equivalent to δ ≤ λ ·∆X(ε), exanching the role played by the fonctions
f and f/λ.

We will now prove that ∆X(1) ≤ 1 and then conclude that QX ≤ 1.
Consider (xn)n∈N a sequence in X such that for all m 6= n, ‖xn−xm‖ = 1

and f : G1(N) → X defined by f(n) = xn,∀n ∈ N. In this case ωf (1) = 1
and for every n 6= m, ‖f(n)− f(m)‖ = 1, thus QX = ∆X(1) ≤ 1.

(2) Finally let 0 ≤ ε ≤ 1 and prove ∆BX
(ε) = ∆X(ε).

• Because BX is a subset of X it is easy to see that ∆BX
(ε) ≥ ∆X(ε)

for all ε > 0.
• Let k ∈ N and f : Gk(N)→ X be a map.

Remark that if there exists an infinite subset M of N such that for every
n < m ∈ Gk(M), ‖f(n) − f(m)‖ ≤ ε, then the image of Gk(M) by f
belongs to a ball of radius 1. Indeed if M = {m1 < · · · < mk < · · · },
denote m = (m1, . . . ,mk) and M′ = {mk+1 < · · · < mj < . . . }.
Then for every n ∈ Gk(M′), we have ‖f(n) − f(m)‖ ≤ ε ≤ 1, thus
f(Gk(M′)) ⊆ f(m) +BX .
So we can consider only f : Gk(N) → X so that there exits M and
x0 ∈ X such that f(Gk(M)) ⊆ x0 +BX and ωf (1) ≤ ∆BX

(ε). Now for
n ∈ Gk(M) define g(n) = f(n) − x0. Because g : Gk(M) → BX and
ωg(1) ≤ ∆BX

(ε), there exists M′ an infinite subset of M such that for
every n < m ∈ Gk(M′), ‖g(n)− g(m)‖ ≤ ε, that is ‖f(n)− f(m)‖ ≤ ε.
Finally we can conclude that ∆X(ε) ≥ ∆BX

(ε).

�

Thanks to this Lemma we are ready to define the so called Q-property:

Definition 3.3. We say that a Banach space X has the Q-property if QX > 0.

We can use Theorem 3.1 in order to give an obstruction to uniform or coarse
embeddings into reflexive Banach spaces in terms of property Q.
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Corollary 3.4. Let X be a Banach space which fails the Q-property. Then

(1) BX cannot be uniformly embedded into a reflexive Banach space.
(2) X cannot be coarsely embedded into a reflexive Banach space.

Proof.

(1) Assume that BX uniformly embeds into a reflexive Banach space. Then
for every positive ε, ∆BX

(ε) > 0. But ∆BX
(1) = ∆X(1) = QX · 1 > 0, so

finally X has the Q-property.
(2) Assume that X coarsely embeds into a reflexive Banach space. Then

lim
ε→+∞

QX · ε = lim
ε→+∞

∆X(ε) = +∞, hence QX 6= 0 and X has the Q-

property.

�

4. Examples

4.1. Reflexive spaces. It is clear by Corollary 3.4 that a reflexive Banach space
has the Q-property.

4.2. Stable spaces. Recall that a metric space (M,d) is stable if for every se-
quences (xn)n∈N, (yn)n∈N in M , if the following limits exist, then

lim
m→+∞

lim
n→+∞

d(xm, yn) = lim
n→+∞

lim
m→+∞

d(xm, yn).

It is proved in Section 2 of [11] that a stable metric space strongly uniformly
embeds into a reflexive Banach space. So we deduce that a stable Banach space
has the Q-property. But we will prove this by another way: the next proposition
is proved by a Ramsey type argument.

Proposition 4.1. Let (M,d) be a stable metric space and f : Gk(N) → M a
bounded map. Then for every ε > 0 there exists M, an infinite subset of N, such
that for every n < m ∈ Gk(M),

d(f(n), f(m)) < ωf (1) + ε.

Proof. Since f is bounded, applying Theorem 2.1, we can find an infinite subset M
of N and a > 0 such that for every p, q ∈ Gk(M), |d(f(p), f(q))− a| < ε

4 .
Let U be a non-principal ultrafilter which contains M. Then,

lim
m1∈U

lim
n1∈U

. . . lim
mk∈U

lim
nk∈U

d(f(n), f(m)) ≤ ωf (1)

and because M is stable (see Lemma 9.19 in [6]),

lim
m1∈U

. . . lim
mk∈U

lim
n1∈U

. . . lim
nk∈U

d(f(n), f(m)) ≤ ωf (1).

Then, one can find m1 ≤ · · · ≤ mk ≤ n1 ≤ · · · ≤ nk such that

d(f(n), f(m)) < ωf (1) +
ε

4
.

Therefore,

a < d(f(n), f(m)) +
ε

4
< ωf (1) +

ε

2
.

Finally for every p, q ∈ Gk(M),

d(f(p), f(q)) <
ε

4
+ a < ωf (1) + ε.
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�

Corollary 4.2. A stable Banach space X has the Q-property.

Proof. Let ε > 0 and f : Gk(N) → X be such that ωf (1) ≤
ε

2
. In particular f is

bounded and we can use the previous proposition to obtain an infinite subset M of

N such that for every n < m ∈ Gk(M), ‖f(n)− f(m)‖ ≤ ωf (1) +
ε

2
≤ ε, that is X

has the Q-property. �

4.3. Some Banach spaces failing the Q-property. The following result will
be useful to prove that some spaces do not have the Q-property.

Theorem 4.3. Let X be a Banach space with the Q-property. Then for every ε > 0
and every (xn)n∈N bounded sequence in X with a w∗-cluster point x∗∗ ∈ X∗∗, there
exists a subsequence (yn)n∈N of (xn)n∈N such that

∀k ∈ N, ∀n ∈ G2k(N), ‖
2k∑
j=1

(−1)jynj
‖ ≥ (1− ε)QXkd(x∗∗, X).

Proof. Let ε > 0 and (xn)n∈N be a bounded sequence in X with a w∗-cluster point
x∗∗ ∈ X∗∗. We will denote B := sup

n∈N
‖xn‖ and θ := d(x∗∗, X). We can assume that

θ > 0. Let λ > 1 and P ∈ N be such that
1

λ2
≥ 1−

ε

2
and

1

P
≤

εQXθ
2(2B + θ)

.

First it is possible to extract a subsequence (vn)n∈N of (xn)n∈N such that for
every 1 ≤ m < n and every sequence (aj)

n
j=1 of positive numbers such that

m∑
j=1

aj =

n∑
j=m+1

aj = 1,

we have

‖
m∑
j=1

ajvj −
n∑

j=m+1

ajvj‖ >
θ

λ
.

We will prove that one can find a subsequence (yn)n∈N of (vn)n∈N such that for
every k ≥ 1, there exists bk > 0 such that for every n ∈ G2k(N),

bk −
θ

P
≤ ‖

2k∑
j=1

(−1)jynj
‖ ≤ bk.

Consider first g1 :
G2(N) → R

n 7→ ‖vn1
− vn2

‖ . Since the sequence (vn)n∈N is bounded,

using Ramsey’s theorem, one can find b1 > 0 and ϕ1 : N→ N an increasing bijection
such that:

∀n ∈ G2(ϕ1(N)), b1 −
θ

P
≤ g1(n) ≤ b1.

Now for a fixed k ∈ N, assume that for every 1 ≤ l ≤ k−1, ϕl is constructed such

that ϕl(N) is extracted from ϕl−1(N). Consider gk :

G2k(N) → R

n 7→ ‖
2k∑
j=1

(−1)jvnj
‖ .
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As previously there exists bk > 0 and ϕk : N→ N such that:

∀n ∈ G2k(ϕ1 ◦ · · · ◦ ϕk(N)), bk −
θ

P
≤ gk(n) ≤ bk.

If we define ψ :
N → N
n 7→ ϕ1 ◦ · · · ◦ ϕP ·n(n)

, we obtain that if n1 ≥ k
P , then

ψ(n1) = ϕ1 ◦ · · · ◦ ϕk(n1). Thus the subsequence (vψ(n))n∈N verifies: for every

k ∈ N, there exists a constant bk such that ∀n ∈ G2k(N) verifying n1 ≥ k
P , we have

bk −
θ

P
≤ ‖

2k∑
j=1

(−1)jvψ(nj)‖ ≤ bk.

We will denote the subsequence (vψ(n))n∈N by (yn)n∈N.

Fix k ∈ N and set M = {n ∈ N; n ≥ k
P }. Define f :

Gk(M) → X

n 7→
k∑
j=1

ynj

. We

have

ωf (1) = sup

‖
k∑
j=1

ynj −
k∑
j=1

ymj‖;
k

P
≤ m1 < n1 < m2 < · · · < mk < nk


= sup

‖
2k∑
j=1

(−1)jynj‖;
k

P
≤ n1 < · · · < n2k

 ≤ bk.
Since X has the Q-property, there exists M′, an infinite subset of M, such that for

every n < m ∈ Gk(M′), ‖f(n)− f(m)‖ ≤
bk

QX
. So,

k ·
θ

λ
< k · ‖

k∑
j=1

1

k
ynj −

k∑
j=1

1

k
ymj‖ = ‖f(n)− f(m)‖ ≤

bk

QX
<

bk

QX
· λ

that is bk ≥
QX · k · θ

λ2
.

Now if n ∈ G2k(N), one can find m ∈ G2k(M) such that

‖
2k∑
j=1

(−1)jynj
+

2k∑
j=1

(−1)jymj
‖ ≤

2Bk

P
or ‖

2k∑
j=1

(−1)jynj
−

2k∑
j=1

(−1)jymj
‖ ≤

2Bk

P
.

Finally,

‖
2k∑
j=1

(−1)jynj
‖ ≥ ‖

2k∑
j=1

(−1)jymj
‖ −

2Bk

P
≥ bk −

θ

P
−

2Bk

P
> bk −

kθ

P
−

2Bk

P

≥
QXkθ
λ2

−

(
εQXkθ

2(2B + θ)

)
(θ + 2B) ≥ kθQX (1− ε) ,

which concludes the proof. �

Corollary 4.4. The James space J and its dual J∗ fail the Q-property. In partic-
ular they cannot be uniformly or coarsely embedded into a reflexive Banach space.
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Proof. Let (en)n∈N be the canonical basis of J and xn =
n∑
j=1

ej , n ∈ N. With the

notations of Theorem 4.3, we have x∗∗ = (1, . . . , 1, . . . ) ∈ J∗∗ and d(x∗∗, X) = 1.
For every k ∈ N and every n ∈ G2k(N),

‖
2k∑
j=1

(−1)jxnj
‖J = (2k)1/2

Finally assume J has the Q-property, that is QJ > 0. Then for every ε ≤ 1, one
can find k ∈ N such that (1− ε)QJk ≥ (2k)1/2. Thus (xn)n∈N does not verify the
conclusion of Theorem 4.3.

In the case of J∗ we consider the sequence (e∗n)n∈N which converges to an element
of J∗∗∗ of norm 1. Moreover for every k ∈ N and every n ∈ G2k(N), we have

‖
2k∑
j=1

(−1)je∗nj
‖J∗ ≤ k1/2 and we conclude as previously.

The second part of the result is just a consequence of Corollary 3.4. �

4.4. The space c0.

Corollary 4.5. The space c0 fails the Q-property. In particular c0 cannot be uni-
formly or coarsely embedded into a reflexive Banach space.

Proof. We will prove that the summing bases of c0 does not verify the conclusion
of Theorem 4.3.

Let (en)n∈N be the canonical bases of c0 and xn =
n∑
j=1

ej , n ∈ N. With the

notation of Theorem 4.3, we have x∗∗ = (1, . . . , 1, . . . ) and d(x∗∗, X) = 1. It is

clear that for every k ∈ N and every n ∈ G2k(N), we have ‖
2k∑
j=1

(−1)jxnj‖ = 1.

Finally assume c0 has the Q-property, that is Qc0 > 0. Then for every ε ≤ 1,
one can find k ∈ N such that (1 − ε)Qc0k ≥ 1. Thus (xn)n∈N does not verify the
conclusion of Theorem 4.3.

The second part of the result is a consequence of Corollary 3.4. �

In fact in [11] Kalton proved, before the introduction of the Q-property, that c0
cannot be uniformly or coarsely embedded into a Banach space such that all its
iterated duals are separable. This result is stronger because all iterated duals of J
are separable and this space fails the Q-property.

Theorem 4.6. Let X be a Banach space such that all its duals are separable. Then
c0 cannot be uniformly or coarsely embedded into X.

Lemma 4.7. Let X be a Banach space such that for every k ∈ N, the 2k-th dual
X(2k) of X is separable. Then for every uncountable family (fi)i∈I of bounded
functions fi : Gk(N)→ X and for every ε > 0, there exist i 6= j and M, an infinite
subset of N, such that

∀n ∈ Gk(M), ‖fi(n)− fj(n)‖ < ωfi(1) + ωfj (1) + ε.
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Proof. For every i ∈ I, ∂kUfi belongs to X(2k) and this space is separable thus there
exist i 6= j such that ‖∂kUfi − ∂kUfj‖ < ε

2 .
Now if we apply Lemma 2.4 to fi− fj , we obtain M an infinite subset of N such

that for every n ∈ Gk(M),

‖fi(n)− fj(n)‖ = ‖(fi − fj)(n)‖ < ‖∂kU (fi − fj)‖+ ωfi−fj (1) +
ε

2
< ωfi−fj (1) + ε ≤ ωfi(1) + ωfj (1) + ε.

�

Proof of Theorem 4.6: Let X be a Banach space having all its iterated duals sepa-
rable and h : c0 → X be a map. We will prove that h cannot be a coarse or uniform
embedding. First, we can assume that h is bounded on bounded sets.

Let (en)n∈N be the canonical basis of c0 and define, for every A infinite subset
of N,

sA(n) =
∑
r≤n
r∈A

er, n ∈ N.

Let k ∈ N and 0 < t < +∞ and define, for every A infinite subset of N,

fA :

Gk(N) → c0

n 7→ t
k∑
j=1

sA(nj)

We have {h◦fA; A infinite subset of N} an uncountable family of bounded functions
h ◦ fA : Gk(N) → X, then we can apply Lemma 4.7: for every ε > 0, there exist
A 6= B and M, infinite subsets of N, such that

∀n ∈ Gk(M), ‖h ◦ fA(n)− h ◦ fB(n)‖ < ωh◦fA(1) + ωh◦fB(1) + ε.

Moreover, we have ωh◦fD(1) ≤ ωh(t), for every D infinite subset of N. Indeed
ωfD(1) ≤ t and ωh◦fD(1) = ωh(ωfD(1)) ≤ ωh(t).

Thus we have A 6= B and M, infinite subsets of N, such that for every n ∈ Gk(N),

‖h ◦ fA(n)− h ◦ fB(n)‖ < 2ωh(t) + ε.

Since A 6= B are infinite, there exists p ∈ Gk(M) such that ‖fA(p) − fB(p)‖ = kt.
Hence, ϕh(kt) ≤ ‖h ◦ fA(p) − h ◦ fB(p)‖ < 2ωh(t) + ε, for every ε > 0. Finally we
have

∀k ∈ N,∀t > 0, ϕh(kt) < 2ωh(t).

We will now distinguish two cases to prove that h cannot be a coarse or a uniform
embedding:

• Uniform embedding. If lim
t→0

ωh(t) = 0, we deduce that for every t > 0,

ϕh(t) = 0 and conclude that h cannot be a uniform embedding.
• Coarse embedding. If for every t > 0, ωh(t) is finite, we can deduce that

lim
t→+∞

ϕh(t) is finite, that is h is not a coarse embedding.

�
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5. Lipschitz and uniform embeddings into `∞

To conclude we mention that in [12] Kalton follows the same ideas to prove that
C[1, ω1] cannot be uniformly embedded into `∞, where ω1 is the first uncountable
ordinal.

For every k ∈ N we define Gk(ω1) the set of all subsets of ω1 of size k. We keep
the same notations as previously and define a distance d over Gk(ω1) in the same
way. Kalton proved the following results:

Theorem 5.1 (To compare to Corollary 2.5). Let f : Gk(ω1)→ `∞ be a Lipschitz
mapping with Lipschitz constant L. Then there exist x ∈ `∞ and Ω ⊂ ω1 such that
for every α ∈ Gk(Ω),

‖f(α)− x‖ ≤
L

2
.

As a corollary (to compare to Corollary 4.5) it is proved:

Corollary 5.2. The Banach space and C[1, ω1] cannot be uniformly embedded into
`∞.
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