OBSTRUCTION TO UNIFORM OR COARSE EMBEDDABILITY INTO REFLEXIVE BANACH SPACES

A. DALET

ABSTRACT. This paper is based on the paper [11] of N. J. Kalton. The main result is that c_0 cannot be uniformly or coarsely embedded into a reflexive Banach space. In order to prove it, we will present a Ramsey type argument and Kalton's property Q, which used together permit to rule out coarse or uniform embeddings into reflexive Banach spaces.

1. INTRODUCTION

Let (M, d), (N, δ) be metric spaces and $f : M \to N$ be any map. For t > 0, define

$$\varphi_f(t) = \inf\{\delta(f(x), f(y)); \ d(x, y) \ge t\}$$

and

$$\omega_f(t) = \sup\{\delta(f(x), f(y)); \ d(x, y) \le t\}.$$

The map f is said to be:

- a coarse embedding if $\lim_{t \to +\infty} \varphi_f(t) = +\infty$ and $\omega_f(t) < +\infty, \forall t > 0$. Then M coarsely embeds into N.
- a uniform embedding if $\lim_{t\to 0} \omega_f(t) = 0$ and $\varphi_f(t) > 0$, $\forall t > 0$. Then M uniformly embeds into N.
- a strong uniform embedding if f is a coarse and a uniform embedding.
- a Lipschitz embedding if there exist A, B > 0 such that for every $x, y \in M$,

$$Ad(x,y) \le \delta(f(x), f(y)) \le Bd(x,y).$$

In 1974, Aharoni [1] proved that every separable metric space can be Lipschitz embedded into c_0 . There exist quantitative versions of this result due to Assouad [4], Pelant [17] and finally the sharp constant of distortion is 2 and is given by Kalton and Lancien in [13]. It is an open question to know whether there exist other Banach spaces into which every separable metric spaces can be Lipschitz embedded.

This question is equivalent to the following: if c_0 Lipschitz-embeds into a Banach space, does it imply that it linearly embeds into this space? In [10] Kalton proved that there exists a Banach space into which c_0 strong uniformly embeds but does not linearly embed. More precisely, for any non trivial gauge ω and any metric space (M, d), the Lipschitz-free space over $(M, \omega \circ d)$, denoted $\mathcal{F}_{\omega}(M)$, is a Schur $\mathbb{R}_+ \to \mathbb{R}_+$

space. Moreover it is easy to see that the identity from $(c_0, \|\cdot\|_{\infty})$ to $(c_0, \omega \circ \|\cdot\|_{\infty})$ is a strong uniform embedding. It is known from [9] that $(c_0, \omega \circ \|\cdot\|_{\infty})$ isometrically

embeds into its Lipschitz-free space. Finally, we conclude that c_0 strong uniformly embeds into $\mathcal{F}_{\omega}(c_0)$, which is a Schur space, hence c_0 cannot be linearly embedded into it.

It was proved independently by Christensen [7], Mankiewicz [15] and Aronszajn [3] in the 70's that if a separable Banach space X Lipschitz embeds into a space Y with the Radon-Nikodym property, the embedding admits a point of Gâteauxdifferentiability and one can deduce that X linearly embeds into Y. Thus, because every reflexive space has the RNP, it is not possible to find a reflexive Banach space which is universal for Lipschitz embeddings of separable metric space, but one can ask whether there exists a reflexive Banach space into which every separable metric space could be uniformly or coarsely embedded. Following a paper of Kalton |11| (see also |14| or |8|) we will prove that there exists no reflexive Banach space containing uniformly or coarsely the space c_0 . More precisely we will define a property, failed by c_0 , and prove that a Banach space failing this property cannot be uniformly or coarsely embedded into a reflexive Banach space. This implies a previous result: Mendel and Naor proved in [16] that c_0 cannot be coarsely embedded into a super-reflexive Banach space. However Baudier obtained in [5] that any Banach space without cotype contains strongly uniformly every proper metric space. In particular $\left(\oplus_{n=1}^{+\infty} \ell_{\infty}^{n} \right)_{2}$, which is reflexive, contains strongly uniformly every proper metric space.

Section 2 is about Ramsey theory and is devoted to the proof of a Ramsey type argument due to Kalton [11]. In section 3 we introduce the Q-property and prove that a Banach space failing it cannot be uniformly or coarsely embedded into a reflexive Banach space. In section 4 it is proved first that a stable Banach space has the Q-property. Then we present a theorem which permits to rule out the Q-property and we use it to prove that the James space J and its dual fail it. To conclude this section, we focus on the space c_0 and prove that it does not have the Q-property. Then we prove a stronger result of Kalton: c_0 cannot be uniformly or coarsely embedded into a Banach space having all its iterated duals separable. Finally in section 5, we compare the structure of the paper [11] with the proof of the fact that $C[1, \omega_1]$ cannot be uniformly embedded into ℓ_{∞} in [12].

2. Preliminaries: Ramsey theory and special graphs

Let \mathbb{M} be an infinite subset of \mathbb{N} and $k \in \mathbb{N}$. The set $G_k(\mathbb{M})$ is the set of all subsets of \mathbb{M} of size k. We will write an element \overline{n} of $G_k(\mathbb{M})$ as follows: $\overline{n} = \{n_1, \ldots, n_k\}$, with $n_1 < \cdots < n_k$.

First we state Ramsey's theorem (see [18]):

Theorem 2.1. Let $k, r \in \mathbb{N}$ and $f : G_k(\mathbb{N}) \to \{1, \ldots, r\}$ be any map. Then there exists an infinite subset \mathbb{M} of \mathbb{N} and $i \in \{1, \ldots, r\}$ such that for every $\overline{n} \in G_k(\mathbb{M})$, $f(\overline{n}) = i$.

It is not difficult to deduce a topological version of this result.

Corollary 2.2. Let (K, d) be a compact metric space, $k \in \mathbb{N}$ and $f : G_k(\mathbb{N}) \to K$. Then for every $\varepsilon > 0$, there exists an infinite subset \mathbb{M} of \mathbb{N} such that for every $\overline{n}, \overline{m} \in G_k(\mathbb{M}), d(f(\overline{n}), f(\overline{m})) < \varepsilon$.

We can think about a result as a part of Ramsey theory if for a given coloring of a mathematical object, there exists a sub-object which is monochromatic. From now we will follow the paper of Kalton [11] (see also [14], [8]). For an infinite subset \mathbb{M} of \mathbb{N} , endow the space $G_k(\mathbb{M})$ with the following metric d: two distinct subsets $\overline{n}, \overline{m} \in G_k(\mathbb{M})$ are said to be adjacent $(d(\overline{n}, \overline{m}) = 1)$ if

$$n_1 \leq m_1 \leq n_2 \leq \cdots \leq n_k \leq m_k$$
 or $m_1 \leq n_1 \leq m_2 \leq \cdots \leq m_k \leq n_k$.

We will write $\overline{n} < \overline{m}$ when $n_k < m_1$. In this case, $d(\overline{n}, \overline{m}) = k$.

We will start by a Ramsey type result which will be useful to give an obstruction to uniform and coarse embeddability into reflexive Banach spaces. Before to state it we need some tools.

Let X be a Banach space, $k \in \mathbb{N}$, $f : G_k(\mathbb{N}) \to X$ a bounded map and \mathcal{U} a non-principal ultrafilter on \mathbb{N} . We define a bounded map $\partial_{\mathcal{U}} f : G_{k-1}(\mathbb{N}) \to X^{**}$ as follows:

$$\forall \overline{n} \in G_{k-1}(\mathbb{N}), \ \partial_{\mathcal{U}} f(\overline{n}) = w^* \text{-} \lim_{n_k \in \mathcal{U}} f(n_1, \dots, n_{k-1}, n_k).$$

We can iterate this procedure for $1 \leq r \leq k$: $\partial^r_{\mathcal{U}} f : G_{k-r}(\mathbb{N}) \to X^{(2r)}$, where $X^{(2r)}$ is the 2*r*-th dual of X. Then $\partial^k_{\mathcal{U}} f$ is an element of $X^{(2k)}$.

Proposition 2.3. Let $f : G_k(\mathbb{N}) \to \mathbb{R}$ be a bounded map. Then for every $\varepsilon > 0$, there exists \mathbb{M} , an infinite subset of \mathbb{N} , such that:

$$\forall \overline{n} \in G_k(\mathbb{M}), |f(\overline{n}) - \partial_{\mathcal{U}}^k f| < \varepsilon$$

Proof. Let $\varepsilon > 0$. By induction on $j \in \mathbb{N}$, we will construct $\mathbb{M} = \{m_1, \ldots, m_j, \ldots\}$ such that if $\overline{n} \subset \{m_1, \ldots, m_j\}$ is of size $i \leq \min\{j, k\}$, then $|\partial_{\mathcal{U}}^{k-i}f(\overline{n}) - \partial_{\mathcal{U}}^k f| < \varepsilon$:

• Because

$$\partial_{\mathcal{U}}^{k} f = w^{*} - \lim_{n_{1} \in \mathcal{U}} \dots \lim_{n_{k} \in \mathcal{U}} f(n_{1}, \dots, n_{k})$$

and for $m \in \mathbb{N}$,

$$\partial_{\mathcal{U}}^{k-1} f(m) = w^* - \lim_{n_2 \in \mathcal{U}} \dots \lim_{n_k \in \mathcal{U}} f(m, n_2, \dots, n_k)$$

we can deduce that there exists $m_1 \in \mathbb{N}$ such that $|\partial_{\mathcal{U}}^{k-1}f(m_1) - \partial_{\mathcal{U}}^k f| < \varepsilon$.

• Assume $m_1 < \cdots < m_j$ chosen. Let $1 \le i \le \min\{i, k-1\}$ and $\overline{n} = \{n_i\}$

Let $1 \leq i \leq \min\{j, k-1\}$ and $\overline{n} = \{n_1, \dots, n_i\} \subset \{m_1, \dots, m_j\}$. Then for $m > m_j$,

$$|\partial_{\mathcal{U}}^{k-(i+1)}f(\overline{n}\cup m) - \partial_{\mathcal{U}}^{k-i}f(\overline{n})| \le w^* - \lim_{n_{i+1}\in\mathcal{U}}\lim_{n_{i+2}\in\mathcal{U}}\dots\lim_{n_k\in\mathcal{U}}|f(n_1,\dots,n_i,m,n_{i+1},m_{i+2},\dots,n_k)| - f(n_1,\dots,n_i,n_{i+1},n_{i+2},\dots,n_k)|$$

Thus there exists $\mathbb{A}_{\overline{n}} \in \mathcal{U}$ such that for every $m \in \mathbb{A}_{\overline{n}}, m > m_j$ and

$$w^* - \lim_{n_{i+1} \in \mathcal{U}} \left(\lim_{n_{i+2} \in \mathcal{U}} \dots \lim_{n_k \in \mathcal{U}} |f(n_1, \dots, n_i, m, n_{i+2}, \dots, n_k) - f(n_1, \dots, n_i, n_{i+1}, n_{i+2}, \dots, n_k)| \right) < \varepsilon$$

Moreover the intersection \mathbb{A} of all $\mathbb{A}_{\overline{n}}$ is not empty and belongs to \mathcal{U} . Thus pick $m_{j+1} \in \mathbb{A}$.

Then for every
$$\overline{n} = \{n_1, \dots, n_i\} \subset \{m_1, \dots, m_j\}, 1 \le i \le \min\{j, k-1\},$$

 $|\partial_{\mathcal{U}}^{k-(i+1)} f(\overline{n} \cup m_{j+1}) - \partial_{\mathcal{U}}^k f| \le |\partial_{\mathcal{U}}^{k-(i+1)} f(\overline{n} \cup m_{j+1}) - \partial_{\mathcal{U}^{k-i}} f(\overline{n})| + |\partial_{\mathcal{U}}^{k-i} f(\overline{n}) - \partial_{\mathcal{U}}^k f| \le 2\varepsilon$

We deduce the result with i = k.

It is possible to generalize this result to bounded maps which takes values into a Banach space X.

Lemma 2.4. Let $f : G_k(\mathbb{N}) \to X$ be a bounded map. Then for every $\varepsilon > 0$, there exists \mathbb{M} , an infinite subset of \mathbb{N} , such that:

$$\forall \overline{n} \in G_k(\mathbb{M}), \|f(\overline{n})\| < \|\partial_{\mathcal{U}}^k f\| + \omega_f(1) + \varepsilon.$$

Proof. For two bounded maps $f : G_k(\mathbb{N}) \to X$ and $g : G_k(\mathbb{N}) \to X^*$, define $f \otimes g : G_{2k}(\mathbb{N}) \to \mathbb{R}$ by $f \otimes g(\overline{n}) = \langle f(n_2, n_4, \dots, n_{2k}), g(n_1, n_3, \dots, n_{2k-1}) \rangle$.

Then $\partial_{\mathcal{U}}^2(f \otimes g) = \partial_{\mathcal{U}} f \otimes \partial_{\mathcal{U}} g$. Indeed,

$$\partial_{\mathcal{U}}(f \otimes g)(n_1, \dots, n_{2k-1}) = \lim_{n_{2k} \in \mathcal{U}} \langle f(n_2, n_4, \dots, n_{2k}), g(n_1, n_3, \dots, n_{2k-1}) \rangle$$
$$= \langle \partial_{\mathcal{U}} f(n_2, \dots, n_{2k-2}), g(n_1, \dots, n_{2k-1}) \rangle$$

thus

$$\partial_{\mathcal{U}}^{2}(f \otimes g)(n_{1}, \dots, n_{2k-2}) = \lim_{n_{2k-1} \in \mathcal{U}} \langle \partial_{\mathcal{U}} f(n_{2}, n_{4}, \dots, n_{2k-2}), g(n_{1}, n_{3}, \dots, n_{2k-1}) \rangle$$
$$= \langle \partial_{\mathcal{U}} f(n_{2}, \dots, n_{2k-2}), \partial_{\mathcal{U}} g(n_{1}, \dots, n_{2k-3}) \rangle$$
$$= (\partial_{\mathcal{U}} f \otimes \partial_{\mathcal{U}} g)(n_{1}, \dots, n_{2k-2}).$$

In particular, $\partial_{\mathcal{U}}^{2k}(f \otimes g) = \partial_{\mathcal{U}}^{k} f \otimes \partial_{\mathcal{U}}^{k} g$.

Let $f : G_k(\mathbb{N}) \to X$ be a bounded map. Hahn-Banach theorem gives a map g from $G_k(\mathbb{N})$ to X^* such that for every $\overline{n} \in G_k(\mathbb{N}), \langle f(\overline{n}), g(\overline{n}) \rangle = ||f(\overline{n})||$ and $||g(\overline{n})|| = 1$. It follows,

$$|\partial_{\mathcal{U}}^{2k}(f \otimes g)| = |\partial_{\mathcal{U}}^{k}f \otimes \partial_{\mathcal{U}}^{k}g| = |\langle \partial_{\mathcal{U}}^{k}f, \partial_{\mathcal{U}}^{k}g \rangle| \le \|\partial_{\mathcal{U}}^{k}f\| \|\partial_{\mathcal{U}}^{k}g\| = \|\partial_{\mathcal{U}}^{k}f\|$$

The map $f \otimes g : G_{2k}(\mathbb{N}) \to \mathbb{R}$ is bounded, then we can apply Proposition 2.3 and for every $\varepsilon > 0$ there exists \mathbb{A} an infinite subset of \mathbb{N} such that for every $\overline{n} \in G_{2k}(\mathbb{A}), |f \otimes g(\overline{n}) - \partial_{\mathcal{U}}^{2k} f \otimes g| < \varepsilon$, hence

$$|f \otimes g(\overline{n})| < \varepsilon + |\partial_{\mathcal{U}}^{2k} f \otimes g| \le \varepsilon + \|\partial_{\mathcal{U}}^{k} f\|.$$

Now we enumerate $\mathbb{A} = \{m_1 < n_1 < m_2 < n_2 < \dots < m_j < n_j < \dots\}$ and set $\mathbb{M} = \{m_1, \dots, m_j, \dots\}$.

Let $\overline{n} \in G_k(\mathbb{M})$, then for any $\overline{p} \in G_k(\mathbb{A})$ which is adjacent to \overline{n} (such a \overline{p} exists by the definitions of \mathbb{A} and \mathbb{M}), we have

$$\begin{split} \|f(\overline{n})\| &= \langle f(\overline{n}), g(\overline{n}) \rangle = \langle f(\overline{p}), g(\overline{n}) \rangle + \langle f(\overline{n}) - f(\overline{p}), g(\overline{n}) \rangle \\ &\leq f \otimes g(n_1, p_1, \dots, n_k, p_k) + \|f(\overline{n}) - f(\overline{p})\| \|g(\overline{n})\| \\ &< \varepsilon + \|\partial_{\mathcal{U}}^k f\| + \omega_f(d(\overline{n}, \overline{p})) = \varepsilon + \|\partial_{\mathcal{U}}^k f\| + \omega_f(1) \end{split}$$

We can now state the result we will use to prove the main theorem:

Corollary 2.5. Let X be a reflexive Banach space and $f : G_k(\mathbb{N}) \to X$ be a bounded map. Then for every $\varepsilon > 0$, there exists \mathbb{M} , an infinite subset of \mathbb{N} , and $x \in X$ such that:

$$\forall \overline{n} \in G_k(\mathbb{M}), \|f(\overline{n}) - x\| \le \omega_f(1) + \varepsilon.$$

4

Proof. Since X is reflexive there exists $x \in X$ such that $\partial_{\mathcal{U}}^k f = x$. We define a bounded map $g: G_k(\mathbb{N}) \to X$ by $g(\overline{n}) = f(\overline{n}) - x$, for all $\overline{n} \in G_k(\mathbb{N})$. Clearly $\partial_{\mathcal{U}}^k g = 0$ and $\omega_g(1) = \omega_f(1)$. Finally by a direct application of the previous lemma:

$$\forall \varepsilon > 0, \exists \mathbb{M} \subseteq \mathbb{N} : \forall \overline{n} \in G_k(\mathbb{M}), \|g(\overline{n})\| < \|\partial_{\mathcal{U}}^k g\| + \omega_g(1) + \varepsilon.$$

That is,

$$\forall \varepsilon > 0, \exists \mathbb{M} \subseteq \mathbb{N} : \forall \overline{n} \in G_k(\mathbb{M}), \|f(\overline{n}) - x\| < \omega_f(1) + \varepsilon.$$

3. Obstruction to uniform or coarse embeddings into reflexive Banach spaces

Given (M, d) a metric space, $\varepsilon > 0$ and $\delta \ge 0$, we say that M has the $\mathcal{Q}(\varepsilon, \delta)$ -property if for every $k \in \mathbb{N}$, for every map $f : G_k(\mathbb{N}) \to M$ with $\omega_f(1) \le \delta$, there exists an infinite subset \mathbb{M} of \mathbb{N} such that:

$$\forall \overline{n} < \overline{m} \in G_k(\mathbb{M}), \ d(f(\overline{n}), f(\overline{m})) \leq \varepsilon.$$

We define $\Delta_M(\varepsilon)$ as the supremum over all $\delta \geq 0$ such that M has the $\mathcal{Q}(\varepsilon, \delta)$ -property.

The key result of this paper is the following:

Theorem 3.1. Let (M, d) be a metric space.

(1) If M uniformly embeds into a reflexive Banach space, then

$$\forall \varepsilon > 0, \Delta_M(\varepsilon) > 0.$$

(2) If M coarsely embeds into a reflexive Banach space, then

$$\lim_{\varepsilon \to +\infty} \Delta_M(\varepsilon) = +\infty$$

Proof. Let X be a reflexive Banach space and $h: M \to X$ be any map.

We will prove that for every $\delta > 0$ and $f : G_k(\mathbb{N}) \to M$ a map such that $\omega_f(1) \leq \delta$, there exists an infinite subset \mathbb{M} of \mathbb{N} so that for every $\overline{n} < \overline{p} \in G_k(\mathbb{M})$, $\varphi_h(d(f(\overline{n}), f(\overline{p}))) \leq 4 \omega_h(\delta)$ and conclude.

Let $\delta > 0$ and $f : G_k(\mathbb{N}) \to M$ be a map such that $\omega_f(1) \leq \delta$. We can apply Corollary 2.5 on the map $h \circ f : G_k(\mathbb{N}) \to X$, with $\varepsilon = \omega_{h \circ f}(1)$, to obtain \mathbb{M} , an infinite subset of \mathbb{N} , and $x \in X$ such that for every $\overline{n}, \overline{p} \in G_k(\mathbb{M})$,

$$\|h \circ f(\overline{n}) - h \circ f(\overline{p})\| \le \|h \circ f(\overline{n}) - x\| + \|h \circ f(\overline{p}) - x\| \le 4 \omega_{h \circ f}(1) \le 4 \omega_h(\delta)$$

The last inequality holds because we clearly have $\omega_{h\circ f}(1) \leq \omega_h(\delta)$.

(1) **Uniform embedding.** Let $\varepsilon > 0$, then there exists $\alpha > 0$ such that $\varphi_h(\varepsilon) \ge 4 \alpha$ and $\delta > 0$ so that $\omega_h(\delta) \le \alpha$.

For this $\delta > 0$, for every $f : G_k(\mathbb{N}) \to M$ such that $\omega_f(1) \leq \delta$, there exists an infinite subset \mathbb{M} of \mathbb{N} such that $\forall \overline{n} < \overline{p} \in G_k(\mathbb{M})$,

$$\varphi_h(d(f(\overline{n}), f(\overline{p}))) \le 4 \ \omega_h(\delta) \le 4 \ \alpha \le \varphi_h(\varepsilon).$$

We finally conclude that $d(f(\overline{n}), f(\overline{p})) \leq \varepsilon$, *M* has the $\mathcal{Q}(\varepsilon, \delta)$ -property and $\Delta_M(\varepsilon) > 0$.

A. DALET

(2) Coarse embedding. Let $\delta > 0$, then there exist $\beta > 0$ such that $\omega_h(\delta) \leq \beta$ and t > 0 such that $\varphi_h(t) \geq 4 \beta$.

Let ε be greater than t. Then for every $f : G_k(\mathbb{N}) \to M$ such that $\omega_f(1) \leq \delta$, there exists an infinite subset \mathbb{M} of \mathbb{N} such that $\forall \overline{n} < \overline{p} \in G_k(\mathbb{M})$,

$$\varphi_h(d(f(\overline{n}), f(\overline{p}))) \le 4 \omega_h(\delta) \le 4 \beta \le \varphi_h(t) \le \varphi_h(\varepsilon).$$

Then $d(f(\overline{n}), f(\overline{p})) \leq \varepsilon$ and $\Delta_M(\varepsilon) \geq \delta$. To conclude, $\lim_{\varepsilon \to +\infty} \Delta_M(\varepsilon) = +\infty$.

Which completes the proof.

In the case where X is a Banach space, the function
$$\Delta_X$$
 has some particular properties:

Lemma 3.2. Let X be a Banach space.

- (1) There exists $0 \le Q_X \le 1$ such that for every $\varepsilon > 0$, $\Delta_X(\varepsilon) = Q_X \cdot \varepsilon$.
- (2) For every $0 < \varepsilon \leq 1$, we have $\Delta_X(\varepsilon) = \Delta_{B_X}(\varepsilon)$.

Proof.

(1) To prove that there exists a constant $\mathcal{Q}_X \geq 0$ such that for every $\varepsilon > 0$, $\Delta_X(\varepsilon) = \mathcal{Q}_X \cdot \varepsilon$, it is enough to prove that for every $\lambda > 0$, we have $\Delta_X(\lambda \cdot \varepsilon) = \lambda \cdot \Delta_X(\varepsilon)$. To do so consider $\delta > 0$ and prove that $\delta \leq \Delta_X(\lambda \cdot \varepsilon)$ is equivalent to $\delta \leq \lambda \cdot \Delta_X(\varepsilon)$, exanching the role played by the fonctions f and f/λ .

We will now prove that $\Delta_X(1) \leq 1$ and then conclude that $\mathcal{Q}_X \leq 1$. Consider $(x_n)_{n \in \mathbb{N}}$ a sequence in X such that for all $m \neq n, ||x_n - x_m|| = 1$ and $f: G_1(\mathbb{N}) \to X$ defined by $f(n) = x_n, \forall n \in \mathbb{N}$. In this case $\omega_f(1) = 1$ and for every $n \neq m, ||f(n) - f(m)|| = 1$, thus $\mathcal{Q}_X = \Delta_X(1) \leq 1$.

- (2) Finally let $0 \le \varepsilon \le 1$ and prove $\Delta_{B_X}(\varepsilon) = \Delta_X(\varepsilon)$.
 - Because B_X is a subset of X it is easy to see that $\Delta_{B_X}(\varepsilon) \ge \Delta_X(\varepsilon)$ for all $\varepsilon > 0$.
 - Let $k \in \mathbb{N}$ and $f : G_k(\mathbb{N}) \to X$ be a map.

Remark that if there exists an infinite subset \mathbb{M} of \mathbb{N} such that for every $\overline{n} < \overline{m} \in G_k(\mathbb{M}), \|f(\overline{n}) - f(\overline{m})\| \leq \varepsilon$, then the image of $G_k(\mathbb{M})$ by f belongs to a ball of radius 1. Indeed if $\mathbb{M} = \{m_1 < \cdots < m_k < \cdots\}$, denote $\overline{m} = (m_1, \ldots, m_k)$ and $\mathbb{M}' = \{m_{k+1} < \cdots < m_j < \ldots\}$. Then for every $\overline{n} \in G_k(\mathbb{M}')$, we have $\|f(\overline{n}) - f(\overline{m})\| \leq \varepsilon \leq 1$, thus $f(G_k(\mathbb{M}')) \subseteq f(\overline{m}) + B_X$.

So we can consider only $f: G_k(\mathbb{N}) \to X$ so that there exits \mathbb{M} and $x_0 \in X$ such that $f(G_k(\mathbb{M})) \subseteq x_0 + B_X$ and $\omega_f(1) \leq \Delta_{B_X}(\varepsilon)$. Now for $\overline{n} \in G_k(\mathbb{M})$ define $g(\overline{n}) = f(\overline{n}) - x_0$. Because $g: G_k(\mathbb{M}) \to B_X$ and $\omega_g(1) \leq \Delta_{B_X}(\varepsilon)$, there exists \mathbb{M}' an infinite subset of \mathbb{M} such that for every $\overline{n} < \overline{m} \in G_k(\mathbb{M}'), ||g(\overline{n}) - g(\overline{m})|| \leq \varepsilon$, that is $||f(\overline{n}) - f(\overline{m})|| \leq \varepsilon$. Finally we can conclude that $\Delta_X(\varepsilon) \geq \Delta_{B_X}(\varepsilon)$.

Thanks to this Lemma we are ready to define the so called \mathcal{Q} -property:

Definition 3.3. We say that a Banach space X has the Q-property if $Q_X > 0$.

We can use Theorem 3.1 in order to give an obstruction to uniform or coarse embeddings into reflexive Banach spaces in terms of property Q.

Corollary 3.4. Let X be a Banach space which fails the Q-property. Then

- (1) B_X cannot be uniformly embedded into a reflexive Banach space.
- (2) X cannot be coarsely embedded into a reflexive Banach space.

Proof.

- (1) Assume that B_X uniformly embeds into a reflexive Banach space. Then for every positive ε , $\Delta_{B_X}(\varepsilon) > 0$. But $\Delta_{B_X}(1) = \Delta_X(1) = \mathcal{Q}_X \cdot 1 > 0$, so finally X has the Q-property.
- (2) Assume that X coarsely embeds into a reflexive Banach space. Then $\lim_{\varepsilon \to +\infty} \mathcal{Q}_X \cdot \varepsilon = \lim_{\varepsilon \to +\infty} \Delta_X(\varepsilon) = +\infty$, hence $\mathcal{Q}_X \neq 0$ and X has the \mathcal{Q} -property.

4. Examples

4.1. **Reflexive spaces.** It is clear by Corollary 3.4 that a reflexive Banach space has the Q-property.

4.2. Stable spaces. Recall that a metric space (M, d) is stable if for every sequences $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}$ in M, if the following limits exist, then

$$\lim_{n \to +\infty} \lim_{n \to +\infty} d(x_m, y_n) = \lim_{n \to +\infty} \lim_{m \to +\infty} d(x_m, y_n).$$

It is proved in Section 2 of [11] that a stable metric space strongly uniformly embeds into a reflexive Banach space. So we deduce that a stable Banach space has the Q-property. But we will prove this by another way: the next proposition is proved by a Ramsey type argument.

Proposition 4.1. Let (M,d) be a stable metric space and $f : G_k(\mathbb{N}) \to M$ a bounded map. Then for every $\varepsilon > 0$ there exists \mathbb{M} , an infinite subset of \mathbb{N} , such that for every $\overline{n} < \overline{m} \in G_k(\mathbb{M})$,

$$d(f(\overline{n}), f(\overline{m})) < \omega_f(1) + \varepsilon.$$

Proof. Since f is bounded, applying Theorem 2.1, we can find an infinite subset \mathbb{M} of \mathbb{N} and a > 0 such that for every $\overline{p}, \overline{q} \in G_k(\mathbb{M}), |d(f(\overline{p}), f(\overline{q})) - a| < \frac{\varepsilon}{4}$.

Let \mathcal{U} be a non-principal ultrafilter which contains \mathbb{M} . Then,

$$\lim_{m_1 \in \mathcal{U}} \lim_{n_1 \in \mathcal{U}} \dots \lim_{m_k \in \mathcal{U}} \lim_{n_k \in \mathcal{U}} d(f(\overline{n}), f(\overline{m})) \le \omega_f(1)$$

and because M is stable (see Lemma 9.19 in [6]),

$$\lim_{m_1 \in \mathcal{U}} \dots \lim_{m_k \in \mathcal{U}} \lim_{n_1 \in \mathcal{U}} \dots \lim_{n_k \in \mathcal{U}} d(f(\overline{n}), f(\overline{m})) \le \omega_f(1).$$

Then, one can find $m_1 \leq \cdots \leq m_k \leq n_1 \leq \cdots \leq n_k$ such that

$$d(f(\overline{n}), f(\overline{m})) < \omega_f(1) + \frac{\varepsilon}{4}.$$

Therefore,

$$a < d(f(\overline{n}), f(\overline{m})) + \frac{\varepsilon}{4} < \omega_f(1) + \frac{\varepsilon}{2}.$$

Finally for every $\overline{p}, \overline{q} \in G_k(\mathbb{M})$,

$$d(f(\overline{p}), f(\overline{q})) < \frac{\varepsilon}{4} + a < \omega_f(1) + \varepsilon.$$

Corollary 4.2. A stable Banach space X has the Q-property.

Proof. Let $\varepsilon > 0$ and $f : G_k(\mathbb{N}) \to X$ be such that $\omega_f(1) \leq \frac{\varepsilon}{2}$. In particular f is bounded and we can use the previous proposition to obtain an infinite subset \mathbb{M} of \mathbb{N} such that for every $\overline{n} < \overline{m} \in G_k(\mathbb{M}), ||f(\overline{n}) - f(\overline{m})|| \leq \omega_f(1) + \frac{\varepsilon}{2} \leq \varepsilon$, that is Xhas the \mathcal{Q} -property. \Box

4.3. Some Banach spaces failing the Q-property. The following result will be useful to prove that some spaces do not have the Q-property.

Theorem 4.3. Let X be a Banach space with the Q-property. Then for every $\varepsilon > 0$ and every $(x_n)_{n \in \mathbb{N}}$ bounded sequence in X with a w^{*}-cluster point $x^{**} \in X^{**}$, there exists a subsequence $(y_n)_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ such that

$$\forall k \in \mathbb{N}, \ \forall \overline{n} \in G_{2k}(\mathbb{N}), \ \|\sum_{j=1}^{2k} (-1)^j y_{n_j}\| \ge (1-\varepsilon) \mathcal{Q}_X k d(x^{**}, X).$$

Proof. Let $\varepsilon > 0$ and $(x_n)_{n \in \mathbb{N}}$ be a bounded sequence in X with a w^* -cluster point $x^{**} \in X^{**}$. We will denote $B := \sup_{n \in \mathbb{N}} ||x_n||$ and $\theta := d(x^{**}, X)$. We can assume that

 $\theta > 0$. Let $\lambda > 1$ and $P \in \mathbb{N}$ be such that $\frac{1}{\lambda^2} \ge 1 - \frac{\varepsilon}{2}$ and $\frac{1}{P} \le \frac{\varepsilon \mathcal{Q}_X \theta}{2(2B + \theta)}$.

First it is possible to extract a subsequence $(v_n)_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ such that for every $1 \leq m < n$ and every sequence $(a_j)_{j=1}^n$ of positive numbers such that

$$\sum_{j=1}^{m} a_j = \sum_{j=m+1}^{n} a_j = 1,$$

we have

$$\|\sum_{j=1}^m a_j v_j - \sum_{j=m+1}^n a_j v_j\| > \frac{\theta}{\lambda}.$$

We will prove that one can find a subsequence $(y_n)_{n \in \mathbb{N}}$ of $(v_n)_{n \in \mathbb{N}}$ such that for every $k \ge 1$, there exists $b_k > 0$ such that for every $\overline{n} \in G_{2k}(\mathbb{N})$,

$$b_k - \frac{\theta}{P} \le \|\sum_{j=1}^{2k} (-1)^j y_{n_j}\| \le b_k.$$

Consider first $g_1: \begin{array}{cc} G_2(\mathbb{N}) \to \mathbb{R} \\ \overline{n} \mapsto \|v_{n_1} - v_{n_2}\| \end{array}$. Since the sequence $(v_n)_{n \in \mathbb{N}}$ is bounded, using Ramsey's theorem, one can find $b_1 > 0$ and $\varphi_1: \mathbb{N} \to \mathbb{N}$ an increasing bijection such that:

$$\forall \overline{n} \in G_2(\varphi_1(\mathbb{N})), \ b_1 - \frac{\theta}{P} \leq g_1(\overline{n}) \leq b_1.$$

Now for a fixed $k \in \mathbb{N}$, assume that for every $1 \leq l \leq k-1$, φ_l is constructed such $G_{2k}(\mathbb{N}) \to \mathbb{R}$ that $\varphi_l(\mathbb{N})$ is extracted from $\varphi_{l-1}(\mathbb{N})$. Consider $g_k : \overline{n} \mapsto \|\sum_{j=1}^{2k} (-1)^j v_{n_j}\|$.

As previously there exists $b_k > 0$ and $\varphi_k : \mathbb{N} \to \mathbb{N}$ such that:

$$\forall \overline{n} \in G_{2k}(\varphi_1 \circ \cdots \circ \varphi_k(\mathbb{N})), \ b_k - \frac{\theta}{P} \leq g_k(\overline{n}) \leq b_k.$$

If we define $\psi : \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & \varphi_1 \circ \cdots \circ \varphi_{P \cdot n}(n) \end{array}$, we obtain that if $n_1 \geq \frac{k}{P}$, then $\psi(n_1) = \varphi_1 \circ \cdots \circ \varphi_k(n_1)$. Thus the subsequence $(v_{\psi(n)})_{n \in \mathbb{N}}$ verifies: for every $k \in \mathbb{N}$, there exists a constant b_k such that $\forall \overline{n} \in G_{2k}(\mathbb{N})$ verifying $n_1 \geq \frac{k}{P}$, we have

$$b_k - \frac{\theta}{P} \le \|\sum_{j=1}^{2k} (-1)^j v_{\psi(n_j)}\| \le b_k.$$

We will denote the subsequence $(v_{\psi(n)})_{n \in \mathbb{N}}$ by $(y_n)_{n \in \mathbb{N}}$.

$$\label{eq:Gk} \begin{split} \text{Fix} \; k \in \mathbb{N} \; \text{and set} \; \mathbb{M} = \{ n \in \mathbb{N}; \; n \geq \frac{k}{P} \}. \; \text{Define} \; f: \; \begin{array}{cc} G_k(\mathbb{M}) & \to & X \\ & & \\ \overline{n} & \mapsto & \sum_{j=1}^k y_{n_j} \end{array}. \; \text{We} \end{split}$$

have

$$\omega_f(1) = \sup\left\{ \|\sum_{j=1}^k y_{n_j} - \sum_{j=1}^k y_{m_j}\|; \frac{k}{P} \le m_1 < n_1 < m_2 < \dots < m_k < n_k \right\}$$
$$= \sup\left\{ \|\sum_{j=1}^{2k} (-1)^j y_{n_j}\|; \frac{k}{P} \le n_1 < \dots < n_{2k} \right\} \le b_k.$$

Since X has the Q-property, there exists \mathbb{M}' , an infinite subset of \mathbb{M} , such that for every $\overline{n} < \overline{m} \in G_k(\mathbb{M}'), ||f(\overline{n}) - f(\overline{m})|| \leq \frac{b_k}{\mathcal{Q}_X}$. So,

$$k \cdot \frac{\theta}{\lambda} < k \cdot \|\sum_{j=1}^{k} \frac{1}{k} y_{n_j} - \sum_{j=1}^{k} \frac{1}{k} y_{m_j}\| = \|f(\overline{n}) - f(\overline{m})\| \le \frac{b_k}{\mathcal{Q}_X} < \frac{b_k}{\mathcal{Q}_X} \cdot \lambda$$

that is $b_k \geq \frac{\mathcal{Q}_X \cdot k \cdot \theta}{\lambda^2}$.

Now if $\overline{n} \in G_{2k}(\mathbb{N})$, one can find $\overline{m} \in G_{2k}(\mathbb{M})$ such that

$$\|\sum_{j=1}^{2k} (-1)^j y_{n_j} + \sum_{j=1}^{2k} (-1)^j y_{m_j}\| \le \frac{2Bk}{P} \quad \text{or} \quad \|\sum_{j=1}^{2k} (-1)^j y_{n_j} - \sum_{j=1}^{2k} (-1)^j y_{m_j}\| \le \frac{2Bk}{P}.$$

Finally,

$$\begin{split} \|\sum_{j=1}^{2k} (-1)^j y_{n_j}\| &\geq \|\sum_{j=1}^{2k} (-1)^j y_{m_j}\| - \frac{2Bk}{P} \geq b_k - \frac{\theta}{P} - \frac{2Bk}{P} > b_k - \frac{k\theta}{P} - \frac{2Bk}{P} \\ &\geq \frac{\mathcal{Q}_X k\theta}{\lambda^2} - \left(\frac{\varepsilon \mathcal{Q}_X k\theta}{2(2B+\theta)}\right) (\theta + 2B) \geq k\theta \mathcal{Q}_X (1-\varepsilon) \,, \end{split}$$
 ich concludes the proof.

which concludes the proof.

Corollary 4.4. The James space J and its dual J^* fail the Q-property. In particular they cannot be uniformly or coarsely embedded into a reflexive Banach space.

Proof. Let $(e_n)_{n \in \mathbb{N}}$ be the canonical basis of J and $x_n = \sum_{j=1}^n e_j$, $n \in \mathbb{N}$. With the notations of Theorem 4.3, we have $x^{**} = (1, \ldots, 1, \ldots) \in J^{**}$ and $d(x^{**}, X) = 1$. For every $k \in \mathbb{N}$ and every $\overline{n} \in G_{2k}(\mathbb{N})$,

$$\|\sum_{j=1}^{2k} (-1)^j x_{n_j}\|_J = (2k)^{1/2}$$

Finally assume J has the \mathcal{Q} -property, that is $\mathcal{Q}_J > 0$. Then for every $\varepsilon \leq 1$, one can find $k \in \mathbb{N}$ such that $(1 - \varepsilon)\mathcal{Q}_J k \geq (2k)^{1/2}$. Thus $(x_n)_{n \in \mathbb{N}}$ does not verify the conclusion of Theorem 4.3.

In the case of J^* we consider the sequence $(e_n^*)_{n\in\mathbb{N}}$ which converges to an element of J^{***} of norm 1. Moreover for every $k \in \mathbb{N}$ and every $\overline{n} \in G_{2k}(\mathbb{N})$, we have $\|\sum_{j=1}^{2k} (-1)^j e_{n_j}^*\|_{J^*} \leq k^{1/2}$ and we conclude as previously.

The second part of the result is just a consequence of Corollary 3.4.

4.4. The space c_0 .

Corollary 4.5. The space c_0 fails the Q-property. In particular c_0 cannot be uniformly or coarsely embedded into a reflexive Banach space.

Proof. We will prove that the summing bases of c_0 does not verify the conclusion of Theorem 4.3.

Let $(e_n)_{n \in \mathbb{N}}$ be the canonical bases of c_0 and $x_n = \sum_{j=1}^n e_j$, $n \in \mathbb{N}$. With the notation of Theorem 4.3, we have $x^{**} = (1, \ldots, 1, \ldots)$ and $d(x^{**}, X) = 1$. It is clear that for every $k \in \mathbb{N}$ and every $\overline{n} \in G_{2k}(\mathbb{N})$, we have $\|\sum_{j=1}^{2k} (-1)^j x_{n_j}\| = 1$.

Finally assume c_0 has the \mathcal{Q} -property, that is $\mathcal{Q}_{c_0} > 0$. Then for every $\varepsilon \leq 1$, one can find $k \in \mathbb{N}$ such that $(1 - \varepsilon)\mathcal{Q}_{c_0}k \geq 1$. Thus $(x_n)_{n \in \mathbb{N}}$ does not verify the conclusion of Theorem 4.3.

The second part of the result is a consequence of Corollary 3.4.

In fact in [11] Kalton proved, before the introduction of the Q-property, that c_0 cannot be uniformly or coarsely embedded into a Banach space such that all its iterated duals are separable. This result is stronger because all iterated duals of J are separable and this space fails the Q-property.

Theorem 4.6. Let X be a Banach space such that all its duals are separable. Then c_0 cannot be uniformly or coarsely embedded into X.

Lemma 4.7. Let X be a Banach space such that for every $k \in \mathbb{N}$, the 2k-th dual $X^{(2k)}$ of X is separable. Then for every uncountable family $(f_i)_{i \in I}$ of bounded functions $f_i : G_k(\mathbb{N}) \to X$ and for every $\varepsilon > 0$, there exist $i \neq j$ and \mathbb{M} , an infinite subset of \mathbb{N} , such that

$$\forall \overline{n} \in G_k(\mathbb{M}), \|f_i(\overline{n}) - f_j(\overline{n})\| < \omega_{f_i}(1) + \omega_{f_i}(1) + \varepsilon.$$

Proof. For every $i \in I$, $\partial_{\mathcal{U}}^k f_i$ belongs to $X^{(2k)}$ and this space is separable thus there exist $i \neq j$ such that $\|\partial_{\mathcal{U}}^{k} f_{i} - \partial_{\mathcal{U}}^{k} f_{j}\| < \frac{\varepsilon}{2}$. Now if we apply Lemma 2.4 to $f_{i} - f_{j}$, we obtain \mathbb{M} an infinite subset of \mathbb{N} such

that for every $\overline{n} \in G_k(\mathbb{M})$,

$$\|f_i(\overline{n}) - f_j(\overline{n})\| = \|(f_i - f_j)(\overline{n})\| < \|\partial_{\mathcal{U}}^k(f_i - f_j)\| + \omega_{f_i - f_j}(1) + \frac{\varepsilon}{2}$$
$$< \omega_{f_i - f_j}(1) + \varepsilon \le \omega_{f_i}(1) + \omega_{f_j}(1) + \varepsilon.$$

Proof of Theorem 4.6: Let X be a Banach space having all its iterated duals separable and $h: c_0 \to X$ be a map. We will prove that h cannot be a coarse or uniform embedding. First, we can assume that h is bounded on bounded sets.

Let $(e_n)_{n\in\mathbb{N}}$ be the canonical basis of c_0 and define, for every A infinite subset of \mathbb{N} ,

$$s_{\mathbb{A}}(n) = \sum_{\substack{r \le n \\ r \in \mathbb{A}}} e_r, n \in \mathbb{N}.$$

Let $k \in \mathbb{N}$ and $0 < t < +\infty$ and define, for every A infinite subset of N,

$$\begin{array}{rccc} G_k(\mathbb{N}) & \to & c_0 \\ f_{\mathbb{A}}: & & \\ & \overline{n} & \mapsto & t \sum_{j=1}^k s_{\mathbb{A}}(n_j) \end{array}$$

We have $\{h \circ f_{\mathbb{A}}; \mathbb{A} \text{ infinite subset of } \mathbb{N}\}$ an uncountable family of bounded functions $h \circ f_{\mathbb{A}} : G_k(\mathbb{N}) \to X$, then we can apply Lemma 4.7: for every $\varepsilon > 0$, there exist $\mathbb{A} \neq \mathbb{B}$ and \mathbb{M} , infinite subsets of \mathbb{N} , such that

$$\forall \overline{n} \in G_k(\mathbb{M}), \|h \circ f_{\mathbb{A}}(\overline{n}) - h \circ f_{\mathbb{B}}(\overline{n})\| < \omega_{h \circ f_{\mathbb{A}}}(1) + \omega_{h \circ f_{\mathbb{B}}}(1) + \varepsilon.$$

Moreover, we have $\omega_{h \circ f_{\mathbb{D}}}(1) \leq \omega_h(t)$, for every \mathbb{D} infinite subset of \mathbb{N} . Indeed $\omega_{f_{\mathbb{D}}}(1) \leq t \text{ and } \omega_{h \circ f_{\mathbb{D}}}(1) = \omega_h(\omega_{f_{\mathbb{D}}}(1)) \leq \omega_h(t).$

Thus we have $\mathbb{A} \neq \mathbb{B}$ and \mathbb{M} , infinite subsets of \mathbb{N} , such that for every $\overline{n} \in G_k(\mathbb{N})$,

$$\|h \circ f_{\mathbb{A}}(\overline{n}) - h \circ f_{\mathbb{B}}(\overline{n})\| < 2\omega_h(t) + \varepsilon.$$

Since $\mathbb{A} \neq \mathbb{B}$ are infinite, there exists $\overline{p} \in G_k(\mathbb{M})$ such that $||f_{\mathbb{A}}(\overline{p}) - f_{\mathbb{B}}(\overline{p})|| = kt$. Hence, $\varphi_h(kt) \leq \|h \circ f_{\mathbb{A}}(\overline{p}) - h \circ f_{\mathbb{B}}(\overline{p})\| < 2\omega_h(t) + \varepsilon$, for every $\varepsilon > 0$. Finally we have

$$\forall k \in \mathbb{N}, \forall t > 0, \varphi_h(kt) < 2\omega_h(t).$$

We will now distinguish two cases to prove that h cannot be a coarse or a uniform embedding:

- Uniform embedding. If $\lim_{t\to 0} \omega_h(t) = 0$, we deduce that for every t > 0, $\varphi_h(t) = 0$ and conclude that h cannot be a uniform embedding.
- Coarse embedding. If for every t > 0, $\omega_h(t)$ is finite, we can deduce that $\lim_{t \to +\infty} \varphi_h(t) \text{ is finite, that is } h \text{ is not a coarse embedding.}$

A. DALET

5. Lipschitz and uniform embeddings into ℓ_{∞}

To conclude we mention that in [12] Kalton follows the same ideas to prove that $C[1, \omega_1]$ cannot be uniformly embedded into ℓ_{∞} , where ω_1 is the first uncountable ordinal.

For every $k \in \mathbb{N}$ we define $G_k(\omega_1)$ the set of all subsets of ω_1 of size k. We keep the same notations as previously and define a distance d over $G_k(\omega_1)$ in the same way. Kalton proved the following results:

Theorem 5.1 (To compare to Corollary 2.5). Let $f : G_k(\omega_1) \to \ell_{\infty}$ be a Lipschitz mapping with Lipschitz constant L. Then there exist $x \in \ell_{\infty}$ and $\Omega \subset \omega_1$ such that for every $\overline{\alpha} \in G_k(\Omega)$,

$$\|f(\overline{\alpha}) - x\| \le \frac{L}{2}.$$

As a corollary (to compare to Corollary 4.5) it is proved:

Corollary 5.2. The Banach space and $C[1, \omega_1]$ cannot be uniformly embedded into ℓ_{∞} .

References

- I. Aharoni, Every separable space is Lipschitz equivalent to a subset of c₀⁺, Israel J. Math. 19 (1974), 284-291.
- I. Aharoni and J. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 281-283.
- N. Aronszajn, Differentiability of Lipschitz functions in Banach spaces, Studia Math. 57 (1976), 147-160.
- P. Assouad, Remarques sur un article de Israel Aharoni sur les plongements Lipschitziens dans c₀, Israel J. Math. 31 (1978), 97-100.
- 5. F. Baudier, *Embeddings of proper metric spaces into Banach spaces*, Houston J. Math 38 (2012), 209-224.
- Y. Benyamini and J. Lindenstrauss, *Geometric nonlinear functional analysis*, A.M.S. Colloquium publications, vol 48, American Mathematical Society, Providence, RI, (2000).
- J.P.R. Christensen, Measure theoritic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, in "Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux, 1973", Vol. 2, 29-39.
- 8. G. Godefroy, G. Lancien and V. Zizler, *The non-linear geometry of Banach spaces after Nigel Kalton*, Rocky Mountain J. of Math., *to appear*.
- 9. G. Godefroy and N.J. Kalton, Lipschitz-free spaces, Studia Math. 159 (2003), 121-141.
- N.J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171-217.
- N.J. Kalton, Coarse and uniform embeddings into reflexive spaces, Quart. J. Math. (Oxford) 58 (2007), 393-414.
- 12. N.J. Kalton, Lipschitz and uniform embeddings into ℓ_{∞} , Fund. Math. 212 (2011), 53-69.
- N.J. Kalton and G. Lancien, Best constants for Lipschitz embeddings of metric spaces into c₀, Fund. Math. 199 (2008), 249-272.
- 14. G. Lancien, A short course on nonlinear geometry of Banach spaces, Topics in Functional and Harmonic Analysis, 77-102, Theta Series in Advanced Mathematics, Bucharest 2012, Ed. by C. Badea, D. Li and V. Petkova.
- P. Mankiewicz, On the differentiability of Lipschitz mappings in Frechet spaces, Studia Math. 45 (1973), 15-29.
- 16. M. Mendel and A. Naor, Metric cotype, Ann. of Math. (2) 168(1) (2008), 247-298.
- 17. J. Pelant, Embeddings into c0, Topology Appl. 57 (1994), 259269.
- W. T. Gowers, Ramsey methods in Banach spaces, Handbook of the geometry of Banach spaces, vol 2, North-Holland, Amsterdam (2003), 10711097.

OBSTRUCTION TO UNIFORM OR COARSE EMBEDDABILITY INTO REFLEXIVE BANACH SPACEDS $\ensuremath{\mathsf{SPACHS}}$

LABORATOIRE DE MATHÉMATIQUES DE BESANÇON, CNRS UMR 6623,, UNIVERSITÉ DE FRANCHE-COMTÉ, 16 ROUTE DE GRAY, 25030 BESANÇON CEDEX, FRANCE. *E-mail address:* aude.dalet@univ-fcomte.fr