FREE SPACES OVER COUNTABLE COMPACT METRIC
SPACES

A. DALET

ABSTRACT. We prove that the Lipschitz-free space over a countable compact
metric space is isometric to a dual space and has the metric approximation
property.

1. INTRODUCTION

Let (M, d) be a pointed metric space, that is to say a metric space equipped with
a distinguished origin, denoted 0. The space Lipg(M) of Lipschitz functions from
M to R vanishing at 0 is a Banach space equipped with the Lipschitz norm:

o @ =)

Its unit ball is compact with respect to the pointwise topology, then Lipy(M) is a
dual space. In [3], its predual is called the Lipschitz free space over M, denoted
F (M) and it is the closed linear span of {3, , © € M} in Lipo(M)*. One can prove
that the map 6 : M — F(M) is an isometry. For more details on the basic theory of
the spaces of Lipschitz functions and their preduals, called Arens-Eells space there,
see [14].

Very little is known about the structure of Lipschitz-free spaces. For instance
F(R) is isomorphically isometric to L1, but A. Naor and G. Schechtman [11] proved
that F(R?) is not isomorphic to any subspace of L;. The study of the Lipschitz-free
space over a Banach space is useful to learn more about the structure of this Banach
space. For example G. Godefroy and N. Kalton [3] proved, using this theory, that
if a separable Banach space X isometrically embeds in a Banach space Y, then Y
contains a linear subspace which is linearly isometric to X.

We recall that a Banach space X is said to have the approximation property (AP)
if for every € > 0 and every compact set K C X, there is a bounded finite-rank
linear operator T': X — X such that ||Tx — z|| < ¢ for every # € K. If moreover
there exists 1 < A < 400 not depending on € or K such that [|T]| < A then
X has the A-bounded approximation property (A-BAP) and X has the bounded
approximation property (BAP) if it has the A-BAP for some A. Finally X has the
metric approximation property (MAP) if A = 1.

It is already known that F(R™) has the MAP [3], and that if M is a doubling
metric space then F(M) has the BAP [9]. Moreover E. Perneckd and P. Hajek [7]
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proved that F(¢1) and F(R™) have a Schauder basis. However, G. Godefroy and
N. Ozawa [4] constructed a compact metric space K such that F(K) fails the AP.

In the first part of this article we will prove that the Lipschitz-free space over
a countable compact metric space K is isometrically isomorphic to the dual space
of lipg(K) C Lipo(K). Let wy be the first uncountable ordinal, we will prove, by
induction on o < w; such that K(®) is finite, that F(K) has the MAP. This will
rely on a theorem of A. Grothendieck [6] asserting that any separable dual having
the BAP has the MAP, and a decomposition of the space K due to N. Kalton [8].
This provides a negative answer to Question 2 in [4], which was originally asked
by G. Aubrun to G. Godefroy during a seminar in Lyon about his paper with N.
Ozawa.

2. DuALITY

For any pointed metric space (M,d) we denote by lipg(M) the subspace of
Lipo(M) defined as follows: f € lipg(M) if and only if for every € > 0, there
is a 0 > 0 such that for z,y € M, d(z,y) < ¢ implies |f(z) — f(y)| < ed(z,y).

The main result of this section is the following:

Theorem 2.1. If (K,d) is a countable compact metric space, then F(K) is iso-

metrically isomorphic to a dual space, namely lipo(K)*.

Definition 2.2.

(1) Let X be a Banach space. A subspace S of X* is called separating if
x*(xz) =0 for all * € S implies x = 0.

(2) For (M,d) a pointed metric space, lipo(M) separates points uniformly if
there exists a constant ¢ > 1 such that for every z,y € M, some f € lipy(M)
satisfies ||fl|;, < ¢ and |£(z) — f(y)| = d(z,y).

Mimicking an argument from [2] we will use a theorem due to Petunin and
Plichko [13] saying that if (X, || - ||) is a separable Banach space and S a closed
subspace of X* contained in NA(X) (the subset of X* consisting of all linear
forms which attain their norm) and separating points of X, then X is isometrically
isomorphic to S*. Theorem 3.3.3 in [14] gives the same result but in a less general
case.

We start with two lemmas taken from [2].

Lemma 2.3. For any (K, d) compact pointed metric space, the space lipo(K) is a
subset of NA(F(K)).

Proof. We can see lipg(K) as the subset of Lipy(K) containing all f such that
for every € > 0, the set K2 := {(x,y) ceK? xz#y, |fx)— fly)>¢ d(x,y)} is
compact.
Let f € lipo(K), we may assume that f # 0, then there exists ¢ > 0 such that,
f@ S _ o @S 1) - )

fllz = sup —2—"22 = —
M=o )~ P day) ke d@y)

Thus there exist © # y such that || f||L = M and setting v = —2— (8, — d;)

d(z,y d(z,y)
we obtain v € F(K) and || f||z = |f(7)], with |||/ #(x) = 1 because J is an isometry.

Then f is norm attaining and lipy(K) C NA(F(K)). O
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Lemma 2.4. For any (K,d) compact pointed metric space, if lipo(K) separates
points uniformly, then it is separating.

Proof. Using Hahn-Banach theorem, one can prove that lipg(K) is separating if
and only if it is weak*- dense in Lipg(K).

Now assume lipy(K) separates points uniformly. Then there exists ¢ > 1 such
that for every F' C K, F finite, and every f € Lipy(K), we can find g € lipo(K),
llgll < cl|fllz, such that fjp = g;p (see Lemma 3.2.3 in [14]), and it is easy to

deduce that lipg(K) “" = Lipg(K).

O

These lemmas allow us to reduce the problem. We need to prove that the little
Lipschitz space over a countable compact metric space separates points uniformly.

For this proof we will use a characterization of countable compact metric spaces
with the Cantor-Bendixon derivation: for a metric space (M, d) we denote

e M’ the set of accumulation points of M.
o M@ = (MDY for a successor ordinal c.

e M@ = N M® for a limit ordinal a.
B<a

A compact metric space (K, d) is countable if and only if there is a countable ordinal
a such that K(®) is finite.

Proof of Theorem 2.1: Let us prove that
de > 17 vxay € K? dh € llpo(K), Hh”L <g, |h($) - h(y)| - d(l‘,y)

So let x # y € K and set a = d(x,y). Since K is countable and compact the

closed ball B (9: 7) of center x and radius § is countable and compact and there

exists a countable ordinal g such that B ( )( @0) is finite and non empty: there
exist k; € N, yi,--- ,yl € K such that B (x, 5)((10 = {yi, - ,y’fl} . We denote
at = d(yi,x), for 1 < i < k;. Then we can find r; and v] < --- < v{* such that
{al, - ,a"} = {o}, - v}, Now set

1)1:{“/2’ if B (r,2)" = {2}

min (({v}, ¢ — o' P\{0}) U {vi —v7!, 2<i<r}), 0therw1se

and define ¢ : [0, +00[ — [0, +00] by

0 efo, =V
p1(t) =< ot te]v{—%,v1+4[' Vi, 1<i<mr
g tel]f - too[ =V

and ¢, is continuous on [0, +-oo[ and affine on each interval of [0, +oo[ \ ULH! V.
One can check that the slope of ¢ is at most 2 on each of these mtervals o)
lerlle < 2.

With f(-) =d( - ,z) weset C; = f~ ([ +oo[\ UrLE v, Vi).
If Cy is finite or empty define h(-) = (gp od( - ) 01(d(0,2))). It is clear
from the definition of ¢ that ||h]|L < 4, |h(z) —h(y )| = d(:r,y) and h(0) = 0. Now
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’111/2, 1f01:®
0= 1

imin ({v1,sep(Cy)} U {dist(z, K\C4), z € D1}), otherwise

where sep(Cy) = inf{d(z,t), 2 #¢t, 2,t € C1} and Dy = f~! ([0,+oo[\ Uit Vf)
Note that 6 > 0. Indeed vy > 0, C; is finite thus sep(Cy) > 0, for any z € D;
dist(z, K\C7) > 0 and D; is finite.

If follows that every z # t € K such that d(z,t) < § are not in D; and there

exists ¢ < ry such that z,t € f~! (Vf), so the equality h(z) = h(t) holds, i.e.
h € lipo(K).
Assume that C; is infinite. Since C; C B (x 7) we have that for every ordinal
C(a C B( )( ) But Ci N B( )(a(’) = V) SO C(ao = (). However C is
compact, thus there exists 1 < oq < ag so that C’l ) is finite and non empty. Then
there exist k2 € N and y3, - ,y2 € K, such that Cial) ={ys, - ,yQ 21

For 1 < i < ko, we denote ab = d(y4,z). We can find 75 and v3 < --- < vh? such
that
1 k 1
{ag, - ,a22} = {vg," 7”52}'
Now set

v9 = min ({vl, v%} U {vé — vé_l, 2<1< rg})
and define ¢ : [0, +00[ — [0, +00[ continuous by

ri1+1

or(t)  ,te U Vi
o1(vs) tE] 2371)24-23[: Vi, 1<i<ry

and ¢, is affine on each interval of [0, +oo[\((U/LS' Vi) U (U2, V5)) .

The Lipschitz constant of ¢ equals the maximum between ||¢1 ||, and new slopes
of ¢o. It is easy to check that ||<p2||L <2x (1 —|— ) g

Set Cp = f1 (%5 — 3\ (UL 1) U (Ui2,V2)))-

If Cy is finite or empty then settmg h(-) = 2(p20d( - ,x) — p2(d(0,2))), we
obtain [|h]L < 42, [h(x) — h(y)| = d(z,y), h(0) = 0 and w1th

'U2/2a if 02 - @
0<d=4¢ 1
imin({vg, sep(C2)} U {dist(z, K\C3), z € Do}), otherwise

pa(t) =

where Dy = f~! ([ L4 ]\ ((Ufilvf) U (Ufilvzz)))
When z,t € K are such that d(z,t) <, then h(z) = h(t), i.e. h € lipo(K).

If C5 is infinite we proceed inductively in a similar way until we get C,, finite,
which eventually happens because we have a decreasing sequence of ordinals.

The function h we obtain verifies h(0) = 0, |h(y) — h(z)| = d(x,y) and

||h\|L§2j1;[1 (1+2]_1> 2H<1+2j_1> =c
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where ¢ does not depend on z and y. Moreover, setting

0<d=4q 1
3 (min{v,,, sep(Cy)} U {dist(z, K\Cy), z € D, }), otherwise

if z,t € K are such that d(z,t) <9, then h(z) = h(t), i.e. h € lipo(K).
This concludes the proof.

3. METRIC APPROXIMATION PROPERTY

Theorem 3.1. Let (K,d) be a countable compact metric space. Then F(K) has
the metric approximation property.

Before starting the proof let us recall a construction due to N. Kalton [8].
Let (K, d) be an arbitrary pointed metric space and set
K,={x€K, d(0,z) <2"} and O, ={z € K, d(0,z) <2"}, neZ
Fy = Knyi1\O_n_1, N eN.
Then, for every n € Z, we can define a linear operator T, : F(K) — F(K) by:

0 ,re K, 1
T6(z) = (logy d(0,z) — (n—1))d(z) , z € K\Kn—1
n (n+1—1log, d(0,2))0(z) , z€ Kpt1\Kn
0 y X ¢ Kn+1
N
If we set for N € N, Sy = Z T, then Lemma 4.2 in [8] gives:
n=—N

Lemma 3.2. For every N € N, we have ||Sny|| < 72, Sy (F(K)) C F(Fn) and for
every v € F(K), Nhrf SNy =17.
—+00

In order to prove Theorem 3.1 we need the following classical lemma. We will
give its proof for sake of completeness.

Lemma 3.3. If for a countable ordinal there exist Fy,--- | F, clopen subsets of
K@ mutually disjoint, such that K(®) = FyU---UF,, then there exist Gy,--- ,Gp

clopen subsets of K, mutually disjoint, such that K = G1U---UG,, and Gl(-a) =F;.

Proof: We proceed by induction on o < wy such that K(®) = Fy U--- U E,, for all
1<i+#j<n, F;is clopen in K and F,NF; =0.

The result is clear for a = 0.

Assume that the result is true for a < w; and suppose that {F;},_, ., is a clopen
partition of K(@+1),

Each Fj is closed in K(® which is compact, then we can find O; open subset of
K() such that F; C O;, O}, = F;, and 0,N0; =0, fori+#j. Set O = K@\UL, 0;,
Uy =0,U0 and U; = O;, for 2 < i <n. Then K(® = U, U;, U/ = F;, and every
U, is clopen in K(®. Indeed we defined O;,2 < i < n, as open subsets of K(®) so
U; is open in K(®) . Moreover points in O are isolated points of K(® thus O and
then U, are open in K(®. Finally K(®) = Ui, U; then every U;’s are closed.
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We can apply the induction hypothesis to find G, -, G, clopen subsets of K,
mutually disjoints, such that K = Gy U---UG,, and Gga) = U, that is GEO‘H) =F
1<1<n.

Finally we assume « is a limit ordinal and K(® = Fy U---U F,,, disjoint union of
clopen sets in K(®). There exist Oy, --- ,0,, open subsets of K such that F; C O;,
O = F; and 0; N O; = 0 for i # j.

Set F = K\ U, O;, then ﬂﬂ<aFﬂK(ﬂ) = FNK® =(. But F is compact,
then there exists § < « such that F' N K = §, that is to say K®) U, 0;.
Finally K® is the disjoint union of O; N K 1 < i < n, clopen sets in K,
so we can use the induction hypothesis to write K = G; U --- U G,,, G; mutually
disjoint and clopen in K and GZ(»B) =0,NK® = OE’B). Moreover we have § < «
thus G =N, . G =N, 0" =0 = F, O

y<a Tt y<a i

Proof of Theorem 3.1: We proceed by induction on o < w; such that K (@) is finite.

o If K is finite then F(K) is finite dimensional, so has trivially the MAP and
the property is true for a = 0.

e Let a be a countable ordinal and assume that for every 8 < «, if (K, d) is
a compact metric space so that K(#) is finite, then F(K) has the MAP.
Now let (K, d) be a compact metric space such that K (@) is finite.

First F(K) is linearly isometric to lipo (K)* and a theorem of A. Grothendieck
[6] (see also Theorem 1.e.15 in [10]) asserts that a separable Banach space
which is isometric to a dual space and which has the AP has the MAP, so
it is enough to prove that F(K) has the BAP.

Secondly, if K is such that K(® = {ay,--- ,a,}, singletons {a;}’s are
clopen in K(® and Lemma 3.3 gives G1,--- , G, mutually disjoint clopen
subsets of K such that Vi < n, Gga) ={a;} and K = Gy U---UG,.
Moreover F(K) is isomorphic to (©7_;F(K;)), , where K; = G; U {0},
1<i1<n.

Indeed if a = nin dist(G;, G;), where

i#]

dist(G;, G;) = inf {d(z,y) , x € G; , y € G;},

by compactness we have a > 0. Then the operator

Llpo(K) — ( ?:1%1170(](1))00
f — (f\Ki)i:I

is onto, linear, weak*-continuous and for f € Lipg(K), we have

D :

a
mllflh <2()llse < NIz

Hence JF(K) is isomorphic to (&7, F(K;)),, -
The BAP is stable with respect to finite ¢;—sums and isomorphisms,
then it is enough to prove that for any ¢ € {1,--- ,n}, F(K;) has the BAP.

In other words we need to prove that when K(®) is a singleton then F(K)
has the BAP.
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Suppose as we may that K(® = {0}. Using the construction due to
Kalton [8] we have a sequence of linear operators Sy : F(K) — F(Fy),
|ISn]| < 72 and for every v € F(K), Nlir_r: SNy =1.

— o0

Moreover, for every N € N, there exists § < a such that F ](VB ) is finite
and then F(Fy) has the MAP:

since F(Fy) is separable, for every N € N, there exists a sequence
of finite-rank linear operators R} : F(Fy) — F(Fy) so that for every
v € F(Fy), pEI}}oo Ry =~ and [|RY|| <1 for every p € N ([12], see also
Theorem 1.e.13 in [10]).

Setting Qn,p = Ré\' o Sy we deduce that the range of Qu, is finite
dimensional as the range of RY, |Qn | < [|R)|[[|Sn|l < 72 and for every
v € F(K),

li li N = I =.

Thus F(K) has the 72-BAP and this concludes the proof.

4. APPLICATION TO QUOTIENT SPACES

For a pointed metric space (M, d) and A a closed subset of M containing 0 we
can define the quotient M/A as the space (M\A) U {0} with the metric given by:

dapa(2,y) = dist(z, A) y y=0
M/AREY) = min {d(z,y), dist(z, A) +dist(y, A)} , z,y#0

Corollary 4.1. Let (K,d) be a compact metric space which is not perfect (i.e.
K’ # K). Then for every countable ordinal a > 1, the space F(K/K(®) has the
MAP.

Proof: Remark that for every compact metric space (K,d) and every countable
ordinal a > 1, the quotient space K/K(®) is compact and countable because

(K/K@®) @) 5 empty or {0}. Then this result is a consequence of Theorem 3.1. [

Remark 4.2. (1) If K is perfect, then F(K/K(®) = {0}.
(2) Otherwise F(K)/F(K()) is linearly isometric to F(K/K () (We write
F(K)/F(K®) = F(K/K®)).
Indeed we can assume that 0 € K(®). Then

{f € Lipo(K) ; Va,y € K, f(z) = f(y)}
={f € Lipo(K) ; Yz € K\, f(x) = 0}.
And since F(K(®)) = vect {0,, v € K(*)}, we have
{f € Lipo(K) ; Yo € K, f(z) = 0} = F(K@)*,
which is isometric to (f(K)/f(K(a)))*. To sum up

{f € Lipo(K) ; Y.y € K, f(z) = fy)} = (F()/F(ED)) .

From Propositions 1.4.3 and 1.4.4 in [14], there exists an isometry ®
from {f € Lipy(K) ; Yo,y € K@ f(z) = f(y)} onto Lipg (K/K(a)).
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Moreover Lipy(K/K(®) is linearly isometric to F(K/K(®)*, so the space
(}'(K)/}'(K(a)))* is isomorphically isometric to F(K/K(®))*. One can
easily check that ® is weak*-continuous, and finally F(K)/F(K(®) is lin-
early isometric to F(K/K()).

To finish this paper we will use Corollary 4.1 and the previous remark to prove
the following: in order to obtain that every countable compact metric space has
the BAP it is not possible to use the three-space property due to G. Godefroy and
P.D. Saphar [5], asserting:

If M is a closed subspace of a Banach space X so that M~ is complemented in
X* and X/M has the BAP, then X has the BAP if and only if M has the BAP.

Indeed we can construct a compact metric space K so that K = {0}, in
particular F(K), F(K') and F(K)/F(K') have the MAP, but F(K’)* is not com-
plemented in Lipg(K).

To construct this space we need a proposition similar to Proposition 7 in [4]:

Proposition 4.3. For any A > 0, there exist a finite metric space H) and a subset
G of Hy, such that if P : Lipo(Hy) — F(Gx)* is a bounded linear projection, then
Pl > A

Proof: Assume that for some A\g > 0 and for all pairs (G, H) of finite metric spaces
with G C H we can construct P : Lipo(H) — F(G)* linear projection with norm
bounded by Ag.

Let K be the compact metric space such that F(K) fails AP appearing in Corol-
lary 5 of [4]. There exists (Gp)nen an increasing sequence of finite subsets of K
such that U G, =K.

neN

Then for every n € N and every k > n, there exists P¥ : Lipy(Gy) — F(Gp)* a
linear projection of norm less than g, where F(G,,)* C Lipo(Gy.).

Fix n € N. For k € N, let Ey : Lipo(Gr) — Lipo(K) be the non linear exten-
sion operator which preserves the Lipschitz constant given by the inf-convolution
formula:

V[ € Lipo(K), Vo € K, Eyf(x) = nf {f(y)+[|fed(z,y)}-
For f € Lipy(K), we set

Then [|PE(f)llz < Xollf|lz, for every f € Lipg(K).
If U/ is a non trivial ultrafilter on N, for every f € Lipy (K) we can define P, f as

the pointwise limit of P¥(f) with respect to k € U. Then P, is a linear projection
onto F(Gp)*t C Lipg(K) because PF is a projection onto F(G,)* C Lipo(Gy).
Moreover || P, f||L < Aollf|lL and P, f pointwise converges to 0 for any f € Lipo(K).

Set Qn = Idripy (i) — Pn : Lipo(K) — Lipo(K). Then Q, is a continuous linear
projection of finite rank and Ker Q,, = F(G,)* is weak*-closed. Therefore Q,
is weak*-continuous. Moreover ||Q,| < 14 Ao and for every f € Lipy(K), Qnf
converges pointwise to f.

Using Theorem 2 in [1] we deduce that F(K) has the (1+Xg)-BAP, contradicting
our assumption on K.
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d

Thanks to that proposition we will construct a compact metric space K such
that K(® = {0} and F(K’)* is not complemented in Lipy(K):

For every n € N there exist A,, C B, finite such that for every continuous linear
projection P, : Lipy(B,) — F(An)*, we have || P,|| > n.

Set o, = min{d(z,y) , * #y € B,} > 0. If we see B,, as a subspace of £~ with
my, the cardinality of B,,, we can find for every a € A,, L? a sequence converging
to a such that L C B (a, %)

Define K,, = < U L? | U B, we obtain A,, C B, C K,, and K|, = A,,. We
aeAn
can assume that the diameter of K, is less than 8 ™.

Finally we define K := (U {n} x Kn> U {0} equipped with the distance:

neN
d(O7 (’I’Z, g(;)) —9-n
o) ={ G 20

Then K = {0}.

Now assume that there exists P : Lipg(K) — F(K’')L a continuous linear
projection. Let E, : Lipg(B,) — Lipo(Ky), Fn : Lipo(B,) — Lipo(K) and
R, : Lipy(K) — Lipo(B,,) be defined as follows:

Vf € Lipo(By), (Enf)(x) :{ jzgz)) : iifg

Vf € Lipo(By), (Fuf)(m,z) :{ 0

Vf € Lipo(K), Ruf = finyxB.

We set P, := R, o0 PoF, : Lipy(B,) — F(A,)* and we have that P, is a
continuous linear projection. From Proposition 4.3 we deduce that ||B,| > n.
Moreover our choice of «, implies that ||F,|| < 3, then finally ||P|| > n/3 holds
for every n € N. Therefore P is unbounded and F(K’)* is not complemented in
Lipo(K).
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