
FREE SPACES OVER SOME PROPER METRIC SPACES

A. DALET

Abstract. We prove that the Lipschitz-free space over a countable proper
metric space is isometric to a dual space and has the metric approximation

property. We also show that the Lipschitz-free space over a proper ultrametric
space is isometric to the dual of a space which is isomorphic to c0(N).

1. Introduction

For a pointed metric space (M,d), that is a metric space with an origin 0, we
denote Lip0(M) the space of Lipschitz real-valued functions on M which vanish
at 0. Endowed with the norm defined by the Lipschitz constant, this space is a
Banach space. Moreover, its unit ball is compact for the pointwise topology, hence
it is a dual space.

Let x ∈M and define δx ∈ Lip0(M)∗ as follows: for f ∈ Lip0(M), δx(f) = f(x).
The Lipschitz-free space over M , denoted F(M), is the closed subspace of Lip0(M)∗

spanned by the δx’s: F(M) := span{δx, x ∈ M}. Its dual space is isometrically
isomorphic to Lip0(M).

Lipschitz-free spaces are considered in [20], where they are called Arens-Eells
spaces. The notation we use is due to Godefroy and Kalton [6] where they point
out that despite the simplicity of the definition of F(M), it is not easy to study
its linear structure. Although their article was published in 2003, still very little is
known about Lipschitz-free spaces. One can check that the Lipschitz-free space over
R is L1(R), but Naor and Schechtman proved in [17] that F(R2) is not isomorphic
to a subspace of any L1. Moreover, Godard [4] proved that F(M) is isometrically
isomorphic to a subspace of an L1-space if and only if M isometrically embeds into
an R-tree. We will focus on the notion of approximation property.

A Banach space X has the approximation property (AP in short) if for every
positive ε, every K ⊂ X compact, there exists an operator T on X, of finite rank,
such that for every x ∈ K, the norm ‖Tx− x‖ is less than ε.

Let λ ∈ [1,+∞). The space X has the λ-bounded approximation property (λ-
BAP) if for every positive ε, every K ⊂ X compact, there exists an operator T on
X, of finite rank, such that ‖T‖ ≤ λ and for every x ∈ K, the norm ‖Tx − x‖ is
less than ε.

Finally, X has the metric approximation property (MAP) when it has the 1-BAP.

Godefroy and Kalton [6] proved that a Banach space has the λ-BAP if and only if
its Lipschitz-free space has the λ-BAP. Lancien and Perneckà [13] proved that the
Lipschitz-free space over a doubling metric space has the BAP and that F(`1) has
a finite-dimensional Schauder decomposition. Hájek and Perneckà improved this
last result, in [9] they obtained that F(`1) has a Schauder basis. However, there
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are not only positive results, Godefroy and Ozawa [7] constructed a compact metric
space (K, d) such that F(K) fails the AP. But the author proved in [1] that in the
case of countable compact metric spaces, the Lipschitz-free space always has the
MAP. In this article, we will prove that the Lipschitz-free space over a countable
proper metric space and over a proper ultrametric space is a dual space and has
the MAP. More precisely, we show that in the case of a proper ultrametric space,
the Lipschitz-free space has an isometric predual which is isomorphic to c0(N).

2. Countable proper metric spaces

A metric space is said to be proper if every closed ball is compact.
For a metric space (M,d), we will denote by B(x, r) the open ball of center

x ∈M and radius r > 0, and by B(x, r) the closed ball.
The space lip0(M) is the subspace of Lip0(M) of functions f satisfying:

∀ε > 0,∃δ > 0 : d(x, y) < δ ⇒ |f(x)− f(y)| ≤ εd(x, y)

The first result of this section is the following:

Theorem 2.1. Let M be a countable proper metric space and

S =

f ∈ lip0(M); lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

f(x)− f(y)

d(x, y)
= 0

 .

Then, F(M) is isometrically isomorphic to S∗.

Before the proof, we need some definitions:

Definition 2.2.

(1) Let X be a Banach space. A subspace F of X∗ is called separating if
x∗(x) = 0 for all x∗ ∈ F implies x = 0.

(2) For (M,d) a pointed metric space, a subspace F of Lip0(M) separates
points uniformly if there exists a constant c ≥ 1 such that for every x, y ∈
M , some f ∈ F satisfies ‖f‖L ≤ c and |f(x)− f(y)| = d(x, y).

Definition 2.3. Let X be a Banach space. We denote NA(X) the subset of X∗

consisting of all linear forms which attain their norm.

A result of Petun̄ın and Pl̄ıčko [19] asserts that for a separable Banach space X,
if a closed subspace F of X∗ is separating and is a subset of NA(X), then X is
isometrically isomorphic to F ∗. To use this result we proceed with a few lemmas
about the space S.

Lemma 2.4. Let (M,d) be proper pointed metric space. The space S is a subspace
of NA(F(M)).

Proof. Let f ∈ S. We may assume that f 6= 0 and take 0 < ε < ‖f‖L
2 . Since

lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

f(x)− f(y)

d(x, y)
= 0
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there exists r > 0 such that

sup
x or y/∈B(0,r)

x 6=y

|f(x)− f(y)|
d(x, y)

< ε.

Thus, ‖f‖L = sup
x,y∈B(0,r)

y 6=x

|f(x)− f(y)|
d(x, y)

.

Because f ∈ lip0(M), the set

B
2

ε :=
{

(x, y) ∈ B(0, r)2, x 6= y, |f(x)− f(y)| ≥ ε d(x, y)
}

is compact and we have

‖f‖L = sup
x,y∈B(0,r)

y 6=x

|f(x)− f(y)|
d(x, y)

= sup
(x,y)∈B2

ε

|f(x)− f(y)|
d(x, y)

= max
(x,y)∈B2

ε

|f(x)− f(y)|
d(x, y)

.

Thus, there exist x 6= y such that ‖f‖L = |f(x)−f(y)|
d(x,y) . With γ = 1

d(x,y) (δx − δy),

γ ∈ F(M), we obtain ‖f‖L = |f(γ)|, with ‖γ‖F(M) = 1 because δ is an isometry.
Then, f is norm attaining and S ⊂ NA(F(M)). �

Lemma 2.5. Let (M,d) be a proper pointed metric space. If S separates points
uniformly, then it is separating.

Proof. Using Hahn-Banach theorem it is enough to prove that when S separates
points uniformly, it is weak∗-dense in Lip0(M).

We will first prove that the condition

lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

f(x)− f(y)

d(x, y)
= 0

is stable under supremum and infimum between two functions.
Let f, g ∈ S and x 6= y in M such that x or y doesn’t belong to B(0, r). We

assume that f(x) ≤ g(x), the other case is similar. We need to distinguish two
cases:

• if f(y) ≤ g(y), then

inf(f, g)(x)− inf(f, g)(y)

d(x, y)
=
f(x)− f(y)

d(x, y)

and

sup(f, g)(x)− sup(f, g)(y)

d(x, y)
=
g(x)− g(y)

d(x, y)

• if f(y) ≥ g(y), then

f(x)− f(y)

d(x, y)
≤

inf(f, g)(x)− inf(f, g)(y)

d(x, y)
=
f(x)− g(y)

d(x, y)
≤
g(x)− g(y)

d(x, y)
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and

f(x)− f(y)

d(x, y)
≤

sup(f, g)(x)− sup(f, g)(y)

d(x, y)
=
g(x)− f(y)

d(x, y)
≤
g(x)− g(y)

d(x, y)

So we obtain:

lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

inf(f, g)(x)− inf(f, g)(y)

d(x, y)
= 0

and

lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

sup(f, g)(x)− sup(f, g)(y)

d(x, y)
= 0

finally inf(f, g), sup(f, g) ∈ S.

Assume that M is a proper pointed metric space such that S separates points
uniformly. Mimicking the proof of Lemma 3.2.3 in [20] we obtain the following:
there exists b ≥ 1 such that for all f ∈ Lip0(M), for all A finite subset of M
containing 0, we can find g ∈ S so that ‖g‖L ≤ b‖f‖L and g|A = f|A. Finally, one
can deduce that the weak∗-closure of S is Lip0(M), so S is separating. �

Along the proof of Theorem 2.1 we will need a characterization of compact metric
spaces which are countable. First define the Cantor-Bendixon derivation. For a
metric space (M,d) we denote:

• M ′ the set of accumulation points of M .
• M (α) = (M (α−1))′, for a successor ordinal α.
• M (α) =

⋂
β<α

M (β), for a limit ordinal α.

A compact metric space (K, d) is countable if and only if there is a countable ordinal
α such that K(α) is finite.

Proof of Theorem 2.1: Note first that the subspace S of F(M)∗ defined previously
is closed in F(M)∗, so it follows from Lemmas 2.4, 2.5 and from Petun̄ın and
Pl̄ıčko’s result [19] that we only have to prove that S separates points uniformly.

Ideas are the same as in the proof of Theorem 2.1 in [1] but for sake of completeness
we will give all details. Let M be a proper countable metric space, x, y ∈ M and
a = d(x, y). The ball B

(
x, 3a2

)
is compact and countable so there exist a countable

ordinal α0, k1 ∈ N and y11 , · · · , y1k1 ∈M such that

B

(
x,

3a

2

)(α0)

= {y11 , · · · , y1k1}

We can find r1, s1, t1 and

u11 < · · · < u1r1 ≤
a

2
< v11 < · · · < v1s1 < a ≤ w1

1 < · · · < w1
t1 ≤

3a

2

such that {d(x, y1i ), 1 ≤ i ≤ k1} = {u11, · · · , u1r1 , v
1
1 , · · · , v1s1 , w

1
1, · · · , w1

t1}. Now set

u1 = min

( {
a
2 , u

1
1,

a
2 − u

1
r1 , w

1
1 − a, 3a

2 − w
1
t1

}
\{0}⋃{

ui1 − ui−11 , 2 ≤ i ≤ r1} ∪ {wi1 − wi−11 , 2 ≤ i ≤ t1
} )

and define ϕ1 : [0,+∞)→ [0,+∞) by
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ϕ1(t) =


0 , t ∈

[
0, u1

4

)
:= U0

1

ui1 , t ∈
(
ui1 − u1

4 , u
i
1 + u1

4

)
:= U i1, 1 ≤ i ≤ r1

a
2 , t ∈

(
a
2 −

u1

4 , a+ u1

4

)
:= W 0

1 (possibly Ur11 ,W 1
1 ⊂W 0

1 )
3a
2 − w

i
1, t ∈

(
wi1 − u1

4 , w
i
1 + u1

4

)
:= W i

1, 1 ≤ i ≤ t1
0 , t ∈

(
3a2 −

u1

4 ,+∞
)

:= W t1+1
1 (possibly W t1

1 ⊂W
t1+1
1 )

and ϕ1 is affine on each interval of [0,+∞) \
((
∪r1i=0U

i
1

)
∪
(
∪t1+1
i=0 W

i
1

))
. One can

check that ‖ϕ1‖L ≤ 2.
With f(·) = d(·, x), we set

C1 = f−1
(
[0,+∞) \

((
∪r1i=0U

i
1

)
∪
(
∪t1+1
i=0 W

i
1

)))
.

First, if C1 is finite or empty, define h(·) = 2 (ϕ1 ◦ d(·, x)− ϕ1 ◦ d(0, x)). Then
we have |h(x) − h(y)| = d(x, y), h(0) = 0 and ‖h‖L ≤ 4. We need to prove that
h ∈ lip0(M). Set

δ =

 u1/2, if C1 = ∅
1

2
inf ({u1, sep(C1)} ∪ {dist(z,M\C1), z ∈ D1}) , otherwise

where
sep(C1) = inf{d(z, t), z 6= t, z, t ∈ C1}

and

D1 = f−1
(

[0,+∞) \
((
∪r1i=0U

i
1

)
∪
(
∪t1+1
i=0 W

i
1

)))
.

Since C1 is finite we have sep(C1) > 0. Moreover, dist(z,M\C1) > 0 for z ∈ D1

and D1 is finite. Thus we deduce that δ > 0.
If follows that every z 6= t ∈M such that d(z, t) ≤ δ are not inD1 and there exists

0 ≤ i ≤ r1 such that z, t ∈ f−1
(
U i1

)
or 0 ≤ i ≤ t1 + 1 such that z, t ∈ f−1

(
W i

1

)
,

so the equality h(z) = h(t) holds, i.e. h ∈ lip0(M).

Finally, let us prove that lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

h(x)− h(y)

d(x, y)
= 0, that is h ∈ S.

Let r > 0 be such that B(x, 3a2 ) ⊂ B(0, r) and z /∈ B(0, r).

First if t /∈ B
(
x, 3a2

)
then h(z) = h(t) and

|h(z)− h(t)|
d(z, t)

= 0.

Secondly if t ∈ B(x, 3a2 ), then

|h(z)− h(t)|
d(z, t)

=
|h(t)|
d(z, t)

≤
d(x, y)

d(z, t)
−→

r→+∞ 0

so h ∈ S.

Assume now that C1 is infinite. It is a subset of B
(
x, 3a2

)
thus for every ordinal α

we have C
(α)
1 ⊂ B

(
x, 3a2

)(α)
. Moreover, C1∩B(x, 3a2 )(α0) = ∅ so we have C

(α0)
1 = ∅.

Since C1 is compact and countable we can find α1 < α0 such that C
(α1)
1 is finite

and non empty.

There exist k2 ∈ N and y12 , · · · , y
k2
2 ∈ C1 such that C

(α1)
1 = {y12 , · · · , y

k2
2 }. Then

we can find r2, t2 ∈ N and

u12 < · · · < ur22 <
a

2
− u1

4
,

3a

2
+
u1
4
< w1

2 < · · · < wt22
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such that

{d(x, yi2) ; 1 ≤ i ≤ k2} = {u12, · · · , u
r2
2 , w

1
2, · · · , w

t2
2 }.

Set

u2 = min

( {
u1, (

a
2 −

u1

4 )− ur22 , w1
2 − ( 3a

2 + u1

4 )
}⋃

{ui2 − ui−12 , 2 ≤ i ≤ r2} ∪ {wi2 − wi−12 , 2 ≤ i ≤ t2}

)
and define ϕ2 : [0,+∞)→ [0,+∞) by

ϕ2(t) =

 ϕ1(t) , t ∈
(
∪r1i=0U

i
1

)
∪
(
∪t1+1
i=0 W

i
1

)
ϕ1(ui2) , t ∈

(
ui2 − u2

23 , u
i
2 + u2

23

)
:= U i2, 1 ≤ i ≤ r2

ϕ1(wi2) , t ∈
(
wi2 − u2

23 , w
i
2 + u2

23

)
:= W i

2, 1 ≤ i ≤ t2
and ϕ2 is continuous on [0,+∞) and affine on each interval of

[0,+∞)\
((
∪r1i=0U

i
1

)
∪
(
∪t1+1
i=0 W

i
1

)
∪
(
∪r2i=1U

i
1

)
∪
(
∪t2i=1W

i
1

))
.

It is easy to check that ‖ϕ2‖L ≤ 8
3 .

Now we set C2 = C1\f−1
((
∪r2i=1U

i
1

)
∪
(
∪t2i=1W

i
1

))
. First if C2 is finite or empty the

function h(·) = 2 (ϕ2 ◦ d(·, x)− ϕ2 ◦ d(0, x)) verifies h(0) = 0, |h(x)−h(y)| = d(x, y)
and ‖h‖L ≤ 16

3 . Moreover, if we set

δ =

 u2/2, if C2 = ∅
1

2
min ({u2, sep(C2)} ∪ {dist(z,M\C2), z ∈ D2}) , otherwise

where D2 = C1\f−1
((
∪r2i=1U

i
1

)
∪
(
∪t2i=1W

i
1

))
, we obtain that δ > 0 and when

z, t ∈M are such that d(z, t) ≤ δ, then h(z) = h(t). So finally h is in lip0(M). The
proof of the fact that h belongs to S is the same as previously.

If C2 is infinite we proceed inductively until we get Cn finite, which eventually
happens because we construct a decreasing sequence of ordinals.

The function h we finally obtain verifies h(0) = 0, |h(y)− h(x)| = d(x, y) and

‖h‖L ≤ 2

n∏
j=1

(
1 +

1

2j − 1

)
≤ 2

+∞∏
j=1

(
1 +

1

2j − 1

)
:= c

where c does not depend on x and y. Moreover, setting

δ =

 un/2, if Cn = ∅
1

2
(min{un, sep(Cn)} ∪ {dist(z,M\Cn), z ∈ Dn}) , otherwise

we get δ > 0 and if z, t ∈ M are such that d(z, t) ≤ δ, then h(z) = h(t), i.e.

h ∈ lip0(M). Finally, h still verifies lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

h(x)− h(y)

d(x, y)
= 0 so we can

conclude that S separates points uniformly and therefore F(M) is isometrically
isomorphic to S∗. �

We can now prove the second result of this section:

Theorem 2.6. The Lipschitz-free space over a countable proper metric space has
the metric approximation property.
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Proof: A theorem of A. Grothendieck [8] asserts that if a separable Banach space
is isometrically isomorphic to a dual space and has the AP, then it has the MAP.
Thus it follows from Theorem 2.1 that it is enough to prove that for M a countable
proper metric space, F(M) has the BAP.

We need the following result we can deduce from Lemma 4.2 in [11]:
For any pointed metric space M , define for N ∈ N,

AN =
(
B(0, 2N+1)\B(0, 2−N−1)

)
∪ {0}.

Then there exists a sequence of operators SN : F(M)→ F(AN ), of norm less than
72, such that for every γ ∈ F(M) the sequence (SN (γ))N∈N converges to γ.

Now let M be a countable and proper metric space. Since every closed ball is
compact, the set AN is countable and compact, for every N ∈ N. Thus Theorem
3.1 in [1] asserts that F(AN ) has the MAP and since for every N ∈ N, F(AN ) is
separable, there exists RNp : F(AN ) → F(AN ) a sequence of operators of finite-

rank, so that for every γ ∈ F(AN ), lim
p→+∞

RNp γ = γ and ‖RNp ‖ ≤ 1 for every p ∈ N

([18], see also Theorem 1.e.13 in [15]).
Setting QN,p = RNp ◦SN we deduce that the range of QN,p is finite dimensional,

‖QN,p‖ ≤ ‖RNp ‖‖SN‖ ≤ 72 and for every γ ∈ F(M),

lim
N→+∞

lim
p→+∞

RNp SNγ = lim
N→+∞

SNγ = γ.

Thus F(M) has the 72-BAP.

Finally, we can conclude that F(M) has the MAP. �

3. Ultrametric spaces

A metric space (M,d) is said to be ultrametric if for every x, y, z ∈M , we have
d(x, z) ≤ max{d(x, y), d(y, z)}. One can easily prove the following useful properties:

Property 1. For x, y ∈ M and r, r′ > 0, if B(x, r) ∩ B(y, r′) 6= ∅ and r ≤ r′ then
B(x, r) ⊂ B(y, r′).

Property 2. For x, y ∈M and r > 0, if y ∈ B(x, r), then B(y, r) = B(x, r).

Property 3. For x, y, z ∈M , if d(x, y) 6= d(y, z) then

d(x, z) = max{d(x, y), d(y, z)}.

Property 4. For every r > 0 there exists a partition of M in closed balls of radius
r.

Now let us prove the first result of this section:

Theorem 3.1. The Lipschitz-free space over a proper ultrametric space has the
metric approximation property.

Proof: LetM be a proper ultrametric space and τp the topology of pointwise conver-
gence on Lip0(M). We will construct a sequence (Ln)n∈N of operators on Lip0(M),
of norm less than 1, such that for every f ∈ Lip0(M) the sequence (Lnf)n∈N con-
verges pointwise to f .

Let n ∈ N. Because M is ultrametric there exists a partition of B(0, n) into balls
B(x, 1

n ). Moreover, the closed ball B (0, n) is compact then it is possible to find
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x1, · · · , xk ∈M such that {B
(
xi,

1
n

)
}ki=1 is a finite partition of B(0, n). Now define

Ln : Lip0(M)→ Lip0(M) as follows:

∀f ∈ Lip0(M), Ln(f) : M → R

x 7→
{
f(xi) , where x ∈ B

(
xi,

1
n

)
, 1 ≤ i ≤ k

0 , x /∈ B (0, n)

We will first compute the norm of Ln. Let f ∈ Lip0(M) and x, y ∈M .

• If there exists i ∈ {1, · · · , k} such that x, y ∈ B
(
xi,

1
n

)
then clearly:

|Ln(f)(x)− Ln(f)(y)| = 0 ≤ ‖f‖Ld(x, y).

• Now assume x ∈ B
(
xi,

1
n

)
and y ∈ B

(
xj ,

1
n

)
with i 6= j.

Remark that because x ∈ B
(
xi,

1
n

)
, we have B

(
xi,

1
n

)
= B

(
x, 1

n

)
. Fur-

thermore y /∈ B
(
xi,

1
n

)
= B

(
x, 1

n

)
, so d(x, y) > 1

n .

|Ln(f)(x)− Ln(f)(y)| = |f(xi)− f(xj)| ≤ ‖f‖Ld(xi, xj)

≤ ‖f‖L max{d(xi, x), d(xj , x)} = ‖f‖Ld(xj , x)

≤ ‖f‖L max{d(xj , y), d(y, x)} = ‖f‖Ld(x, y)

• Finally, for x ∈ B(0, n) and y /∈ B(0, n), there exists i ∈ {1, · · · , k} such
that x ∈ B

(
xi,

1
n

)
. Because x ∈ B(0, n), we have B(0, n) = B(x, n) and

since y /∈ B(0, n), we obtain d(x, y) > n. Hence

|Ln(f)(x)− Ln(f)(y)| = |f(xi)| ≤ ‖f‖Ld(xi, 0) ≤ ‖f‖L × n ≤ ‖f‖Ld(x, y).

Then ‖Ln(f)‖ ≤ ‖f‖L and ‖Ln‖ ≤ 1.

One can easily prove that Ln is τp − τp-continuous and that for f ∈ Lip0(M),
the sequence (Ln(f))n∈N pointwise converges to f . Then it is the adjoint of an
operator Rn : F(M) → F(M) of norm less than 1 such that for every γ ∈ F(M),
the sequence (Rn(γ))n∈N weakly-converges to γ. Finally, for every n ∈ N we have
Rn (F(M)) = span{δxi

, 1 ≤ i ≤ k}, so the operator Rn is of finite rank. Then,
because F(M) is separable, using convex combinations and a diagonal argument,
we can conclude that F(M) has the MAP [2]. �

It is also possible to prove that the Lipschitz-free space over a proper ultrametric
space M is a dual space. We will prove first that in the case of K a compact
ultrametric space, F(K) is isometrically isomorphic to lip0(K)∗. We will again
use the result of Petun̄ın and Pl̄ıčko. Note that Theorem 3.3.3 in [20] provides an
alternative approach.

Before stating the result let us introduce the notion of R-trees and some background
about its link with ultrametric spaces:

Definition 3.2. A metric space (T, d) is said to be an R-tree when the two following
conditions hold:

(1) for every a, b in T , there exists a unique isometry φ : [0, d(a, b)] → T such
that φ(0) = a and φ(d(a, b)) = b.

(2) any continuous and one-to-one mapping ϕ : [0, 1] → T has same range as
the isometry φ associated to the points a = ϕ(0) and b = ϕ(1).
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Background. P. Buneman proved in [3] that the 4-points property is a characteri-
zation of subsets of R-trees, where a metric space (M,d) has the 4-points property
if for every x, y, z and t in M we have:

d(x, y) + d(z, t) ≤ max {d(x, z) + d(y, t) , d(x, t) + d(y, z)} .
In particular any ultrametric space (M,d) has the 4-points property.

It is proved in [16] by Matoušek that, for a subspace M of a tree T , it is possible
to find a linear extension operator from Lip0(M) to Lip0(T ) which is bounded. In
particular F(M) is complemented in F(T ).

Moreover, Godard proved in [4] that the Lipschitz-free space over an R-tree is
an L1-space.

In conclusion if M is a ultrametric space, its Lipschitz-free space is complemented
into an L1-space.

Theorem 3.3. If (K, d) is a compact ultrametric space, then F(K) is isometrically
isomorphic to lip0(K)∗ and lip0(K) is isomorphic to c0(N).

Proof: It is proved in [1] that for a compact metric space (K, d), the space lip0(K) is
a subset of NA (F(K)) and it is separating as soon as it separates points uniformly.

Let (K, d) be a compact ultrametric space. To obtain the first part of the result
it is enough to prove that lip0(K) separates points uniformly.
Let x, y ∈ K, set a = d(x, y) and define h : K → R as follows:

∀z ∈ K, h(z) = d(x, y)
(
1B(x,a/2)(z)− 1B(x,a/2)(0)

)
where 1B(x,a/2) is the characteristic function of the open ball B(x, a/2).
Then we have h(0) = 0 and |h(x)−h(y)| = d(x, y). We will compute the Lipschitz-
constant of h:
If z, t are both in B(x, a/2) or both outside B(x, a/2), then

|h(z)− h(t)| = 0 ≤ 2d(z, t).

Take z ∈ B(x, a/2) and t /∈ B(x, a/2), then

d(z, t) = max{d(x, z), d(x, t)} = d(x, t) ≥
a

2
=
d(x, y)

2
=
|h(z)− h(t)|

2
.

Hence the function h is 2-Lipschitz.

To conclude we need to prove that h ∈ lip0(K). We will see that δ = a
2 holds for

every ε:
Let z, t ∈ K such that d(z, t) < a

2 .
First, if z ∈ B(x, a/2) then B(x, a/2) = B(z, a/2) and because d(z, t) < a

2 we have
t ∈ B(x, a/2) and h(z) = h(t).
Secondly, if z /∈ B(x, a/2) then t cannot be in B(x, a/2) and h(z) = h(t).

This proves that h is in lip0(K) so this space separates points uniformly and there-
fore this concludes the proof of the fact that F(K) is the dual space of lip0(K).

A result due to D.R. Lewis and C. Stegall [14] asserts that if a separable dual
space is complemented in L1, then it is isomorphic to `1(N). So it follows from the
background before the theorem that F(K) is isomorphic to `1(N).

Finally, Theorem 6.6 in [11] asserts that for a compact metric space K, the space
lip0(K) is isomorphic to a subspace of c0(N). Moreover, its dual is isomorphic to
`1(N), then Corollary 2 in [10] implies that lip0(K) is isomorphic to c0(N). �
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More generally for a proper ultrametric space we have the following:

Theorem 3.4. Let M be a proper ultrametric space and

S =

f ∈ lip0(M); lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

f(x)− f(y)

d(x, y)
= 0

 .

Then F(M) is isometrically isomorphic to S∗ and S is isomorphic to c0(N).

Proof: It is possible to adapt the proof of Theorem 6.6 in [11] to obtain that the
space S is isomorphic to a subspace of c0(N):

Lemma 3.5. Let M be a proper metric space. Then for any ε > 0, the space S is
(1 + ε)-isometric to a subspace of c0(N).

Proof: Assume ε < 1 and consider the space M ×M with the metric :

d((x1, x2), (y1, y2)) = max {d(x1, y1), d(x2, y2)} .
For every j ∈ N and k ∈ Z we consider the compact set

Cj,k =
{

(x1, x2) ∈M ×M ; d(0, x1) ≤ 2j and 2k ≤ d(x1, x2) ≤ 2k+1
}

and Fj,k a finite 2k−3ε-net of Cj,k. Then F :=
⋃
j∈N
k∈Z

Fj,k is countable.

We now define

T : S → c0(F )

f 7→

(
f(x1)− f(x2)

d(x1, x2)

)
(x1,x2)∈F

.

Justify first that Tf ∈ c0(F ) for f ∈ S:
Let α > 0.
Because f ∈ S, in particular f ∈ lip0(M) and there exists K ∈ N such that for

every k ≤ −K, if d(x1, x2) ≤ 2k+1 then
|f(x1)− f(x2)|

d(x1, x2)
≤ α. Thus for every j ∈ N,

every k ≤ −K and (x1, x2) ∈ Cj,k, we have
|f(x1)− f(x2)|

d(x1, x2)
≤ α.

Moreover, lim
r→+∞

sup
x or y/∈B(0,r)

x 6=y

f(x)− f(y)

d(x, y)
= 0, thus there exists R> 0 such that

∀r ≥ R, ∀x /∈ B(0, r), y ∈M , we have
|f(x)− f(y)|

d(x, y)
≤ α.

Let N ∈ N be such that 2n ≥ 2R, ∀n ≥ N .

If (x1, x2) ∈ Cj,k with j ≥ N we clearly have
|f(x1)− f(x2)|

d(x1, x2)
≤ α

Assume now (x1, x2) ∈ Cj,k with k > N and j ≤ N , then

d(0, x2) ≥ d(x1, x2)− d(0, x1) ≥ 2k −R > R

that is x2 /∈ B(0, R) and
|f(x1)− f(x2)|

d(x1, x2)
≤ α.

Finally, we obtain that Tf ∈ c0(F ), for every f ∈ S.
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Clearly ‖T‖ ≤ 1. We will now show that ‖f‖L ≤ (1 + ε)‖Tf‖∞:
Let y1 6= y2 ∈ M . There exists j ∈ N and k ∈ Z such that (y1, y2) ∈ Cj,k and
(x1, x2) ∈ Fj,k such that d((y1, y2), (x1, x2)) ≤ 2k−3ε. Then

d(y1, y2) ≥ d(x1, x2)− d(x1, y1)− d(x2, y2) ≥ d(x1, x2)− 2k−2ε

≥ d(x1, x2)

(
1−

ε

4

)
.

Let f ∈ S,

|f(y1)− f(y2)|
d(y1, y2)

≤
|f(x1)− f(x2)|

d(y1, y2)
+
d(x1, y1) + d(x2, y2)

d(y1, y2)
‖f‖L

≤
|f(x1)− f(x2)|

d(y1, y2)
+
ε

4
‖f‖L

≤

(
1−

ε

4

)−1
|f(x1)− f(x2)|

d(x1, x2)
+
ε

4
‖f‖L

≤

(
1−

ε

4

)−1
‖Tf‖∞ +

ε

4
‖f‖L

Finally, ‖Tf‖∞ ≤ ‖f‖L ≤ (1 + ε)‖Tf‖∞ and one can conclude that S is (1 + ε)-
isometric to a subspace of c0(N). �

We now conclude the proof of Theorem 3.4. We previously proved that in the case of
a proper metric space, the space S is a subspace of NA(F(M)) and it is separating
as soon as it separates points uniformly. Therefore in order to use Petun̄ın and
Pl̄ıčko’s result [19] (see also [5]) we only need to prove that, in the case of proper
ultrametric space, the space S separates points uniformly.

For given x, y ∈ M , the function h defined as in proof of Theorem 3.3 satisfies
h ∈ lip0(M), |h(x)− h(y)| = d(x, y) and its Lipschitz constant does not depend on
x and y.

Let r > 0 be such that B(x, a/2) ⊂ B(0, r), with a = d(x, y). We may and do
assume that d(z, 0) > r.
First if t ∈ B(x, a2 ), then

|h(z)− h(t)|
d(z, t)

=
d(x, y)

d(z, t)
−→

r→+∞ 0.

Secondly if t /∈ B(x, a2 ), then

|f(z)− f(t)|
d(z, t)

= 0.

Finally, we have h ∈ S, then S separates points uniformly. We can conclude that
S∗ is isometrically isomorphic to F(M).

The second part of the proof follows the same line than the last part of the proof
of Theorem 3.3. �

Remark 3.6. B.R. Kloeckner proved in [12] that the Wasserstein space of a compact
ultrametric space is affinely isometric to a convex subset of `1(N).
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